Open Source Java Deep Learning Frameworks for Mac

Java Deep Learning Frameworks for Mac

View 18 business solutions

Browse free open source Java Deep Learning Frameworks for Mac and projects below. Use the toggles on the left to filter open source Java Deep Learning Frameworks for Mac by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 3,793 This Week
    Last Update:
    See Project
  • 2
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 3
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The extraction here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    Seldon Server is a machine learning platform and recommendation engine built on Kubernetes. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Core focuses purely on deploying a wide range of ML models on Kubernetes, allowing complex runtime serving graphs to be managed in production. Seldon Core is a progression of the goals of the Seldon-Server project but also a more restricted focus to solving the final step in a machine learning project which is serving models in production. Seldon Server is a machine learning platform that helps your data science team deploy models into production. It provides an open-source data science stack that runs within a Kubernetes Cluster. You can use Seldon to deploy machine learning and deep learning models into production on-premise or in the cloud (e.g. GCP, AWS, Azure).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.