Browse free open source Python Frameworks and projects below. Use the toggles on the left to filter open source Python Frameworks by OS, license, language, programming language, and project status.

  • Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar Icon
    Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar

    See what hackers already know about your organization – and stop them from getting in.

    Protect your organization from cyber threats with SOCRadar’s cutting-edge threat intelligence. Gain 360° visibility into your digital assets, monitor the dark web, and stay ahead of hackers with real-time insights. Start for free and transform your cybersecurity today.
    Free Trial
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Ultroid

    Ultroid

    Telegram UserBot, Built in Python Using Telethon lib

    Ultroid, a pluggable telegram userbot, made in python using Telethon! Ultroid has been written from scratch, making it more stable and less crashes. Ultroid warns you when you try to install/execute dangerous stuff (people nowadays make plugins to hack user accounts, Ultroid is safe). Unlike many others userbots that are being suspended by Heroku, Ultroid doesn't get suspended. Ultroid has been written from scratch, making it more stable and less of crashes. Error handling been done in the best way possible, such that the bot doesn't crash and stop all of a sudden. Ultroid has minimal amount of plugins (just the necessary ones) in the main repository, and all the other less-useful stuff in the addons repository. This facilitates quick deployments and lag-free use. Ultroid can install any plugin from the most of the other 'userbots' without any issue.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 2
    Papermerge

    Papermerge

    Open Source Document Management System for Digital Archives

    Papermerge is an open source document management system (DMS) primarily designed for archiving and retrieving your digital documents. Instead of having piles of paper documents all over your desk, office or drawers - you can quickly scan them and configure your scanner to directly upload to Papermerge DMS. Store, organize and index scanned documents in PDF, JPEG and TIFF formats. Instantly find relevant information using full text, tags and metadata-based search. Papermerge is free and open-source software which means that transparency is the core value of our software development. Source code can be reviewed and improved by anyone from anywhere. Papermerge supports multiple users. Each user can be assigned different permissions to perform only a specific kind of action e.g. view only documents from a specific folder. OCR technology is vital part of Papermerge. It extracts text information from scanned documents, PDF, JPEG, TIFF files.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 3
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange with a contextual assistant, the assistant needs to be able to use context to build on things that were previously discussed. Rasa enables you to build assistants that can do this in a scalable way. Rasa uses Poetry for packaging and dependency management. If you want to build it from the source, you have to install Poetry first. By default, Poetry will try to use the currently activated Python version to create the virtual environment for the current project automatically.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 4
    AIOGram

    AIOGram

    Framework for Telegram Bot API written in Python 3.7 with asyncio

    aiogram is modern and fully asynchronous framework for Telegram Bot API written in Python with asyncio and aiohttp. It helps you to make your bots faster and simpler. Is a pretty simple and fully asynchronous framework for Telegram Bot API written in Python 3.7 with asyncio and aiohttp.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 5
    PokemonGo-Bot

    PokemonGo-Bot

    The Pokemon Go Bot, baking with community

    PokemonGo-Bot is a project created by the PokemonGoF team. Since no public API available for now, a patch to use HASH-Server was applied. PokemonGoF is not part of HASH-Server dev team and has no connection with it. Based on Python for botting on any operating system - Windows, macOS and Linux. Multi-bot supported. Able to edit bot if certain level has reached. Allow custom hash service provider, if any. GPS Location configuration. Search & spin Pokestops / Gyms. Diverse options for humanlike behavior from movement to overall game play. Ability to add multiple coordinates to select between your favorite botting locations. Support self defined path / route. Advanced catch, evolve and transfer confuration using our PokemonOptimizer settings. Determine which pokeball to use. Rules to determine the use of Razz and Pinap Berries. Exchange, evolve and catch Pokemon base on pre-configured rules. Transfer Pokemon in bulk. Auto switch mode.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    AI Chatbot Framework

    AI Chatbot Framework

    Python chatbot framework with Natural Language Understanding

    Building a chatbot can sound daunting, but it’s totally doable. AI Chatbot Framework is an AI powered conversational dialog interface built in Python. With this tool, it’s easy to create Natural Language conversational scenarios with no coding efforts whatsoever. The smooth UI makes it effortless to create and train conversations to the bot and it continuously gets smarter as it learns from conversations it has with people. AI Chatbot Framework can live on any channel of your choice (such as Messenger, Slack etc.) by integrating it’s API with that platform. You don’t need to be an expert at artificial intelligence to create an awesome chatbot that has AI capabilities. With this boilerplate project you can create an AI-powered chatting machine in no time.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with the 2d-distribution.py. Check out random_search.py for possibilities, you'll likely want to modify it. The examples are capable of (sometimes) finding a good trainer, like 2d-distribution. Mixing and matching components seems to work.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt. The core concept of the system is visual, and the name of the interface corresponds to it one-to-one, so it is also uniform and extensible. You can write and run the strategy in your favorite ide, and then view its related targets, factor, signal and performance on the UI. Once you are familiar with the core concepts of the system, you can apply it to any target in the market.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 10
    This project is a complete cross-platform (Windows, Linux) framework for Evolutionary Computation in pure python. See the project site at http://pyevolve.sourceforge.net or the blog at http://pyevolve.sourceforge.net/wordpress
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Using this plugin-based framework, you can instantly start working on the *brain* of your bot (irc bot, chatterbot, robot, ...). With support for db, irc, logging and programming-language independent plugins, users can easily enhance the functionality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes \texttt{test} set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baseline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Provides a voice interface for applications via a plug in system. Allows the inclusion of voice recognition in an application with a minimum of effort.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a mixin and template tags to integrate Django-fsm state transitions into the Django admin. FSM really helps to structure the code, especially when a new developer comes to the project. FSM is most effective when you use it for some sequential steps. Transition logging support could be achieved with help of django-fsm-log package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    EH Forwarder Bot

    EH Forwarder Bot

    An extensible message tunneling chat bot framework

    Codename EH Forwarder Bot (EFB) is an extensible message tunneling chat bot framework that delivers messages to and from multiple platforms and remotely controls your accounts. Since the majority of our channels are using polling for message retrieval, a stable internet connection is necessary for channels to run smoothly. An unstable connection may lead to slow response, or loss of messages. EFB uses a *nix user configuration style, which is described in details in Directories. In short, if you are using the default configuration, you need to create ~/.ehforwarderbot, and give read and write permission to the user running EFB. Currently, all modules that was submitted to us are recorded in the modules repository. You can choose the channels that fits your need the best. When you have successfully installed the modules of your choices, you can the use the configuration wizard which guides you to enable channels and middlewares, and continue to setup those modules.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Err

    Err

    err is a plugin based chatbot designed to be easily extensible

    err is a plugin based chatbot designed to be easily deployable, extensible and maintainable. It allows you to start scripts interactively from your chatrooms for any reason: random humour, starting a build, monitoring commits, triggering alerts ... It is really easy to add your own feature. Features Backends support: - XMPP : Tested with hipchat, openfire and Jabber but should be compatible with any standard XMPP servers. - CampFire support - Supports MUCs (chatrooms) - Local Graphical Console (for testing/dev) - Local Text Console (for testing/dev)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems. Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an awesome model on GitHub, written in JAX. We'll use PerceiverIO as an example. Implement the model in PyTorch yourself, spending time and energy ensuring every detail is correct. Otherwise, wait for a PyTorch version to appear on GitHub, among the many re-implementation attempts that appear (a, b, c, d, e, f). Instantly transpile the JAX model to PyTorch. This creates an identical PyTorch equivalent of the original model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    InproTK

    InproTK

    An Incremental Spoken Dialogue Processing Toolkit

    InproTK is an Incremental Spoken Dialogue Processing Toolkit, that is, a toolkit to help you build dialogue systems that listen and talk incrementally, allowing for advanced interactional behaviour. Please see our Wiki for more information: http://sourceforge.net/p/inprotk/wiki/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.