Browse free open source Python LLM Inference Tools and projects below. Use the toggles on the left to filter open source Python LLM Inference Tools by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 2
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI is an AI based Open Field Test Rodent Tracker

    OpenFieldAI use AI-CNN to track rodents movement with pretrained OFAI models , or user could create their own model with YOLOv8 for inferencing. The software generates Centroid graph, Heat map and Line path and a spreadsheet containing all calculated parameters like - Speed - Time in and out of ROI - Distance - Entries/Exits for single/multiple pre-recorded videos or live webcam video. The ROI is assigned automatically in multiple video input , and can be manually given in single input. - For Queries/ Reporting Bugs, contact: kabeermuzammil614@gmail.com - Available on WIndows OS
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    MMTracking

    MMTracking

    OpenMMLab Video Perception Toolbox

    MMTracking is an open-source video perception toolbox by PyTorch. It is a part of OpenMMLab project. We are the first open-source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. MMTracking interacts with other OpenMMLab projects. It is built upon MMDetection that we can capitalize any detector only through modifying the configs. All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. We reproduce state-of-the-art models and some of them even outperform the official implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time, it is possible to build a video inference loop from scratch using just Norfair and a detector. Supports moving camera, re-identification with appearance embeddings, and n-dimensional object tracking. Norfair provides several predefined distance functions to compare tracked objects and detections. The distance functions can also be defined by the user, enabling the implementation of different tracking strategies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.