Browse free open source Object Detection Models and projects for Windows below. Use the toggles on the left to filter open source Object Detection Models by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Darknet YOLO

    Darknet YOLO

    Real-Time Object Detection for Windows and Linux

    This is YOLO-v3 and v2 for Windows and Linux. YOLO (You only look once) is a state-of-the-art, real-time object detection system of Darknet, an open source neural network framework in C. YOLO is extremely fast and accurate. It uses a single neural network to divide a full image into regions, and then predicts bounding boxes and probabilities for each region. This project is a fork of the original Darknet project.
    Downloads: 69 This Week
    Last Update:
    See Project
  • 2
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 125 This Week
    Last Update:
    See Project
  • 3
    OpenPose

    OpenPose

    Real-time multi-person keypoint detection library for body, face, etc.

    OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facial, and foot keypoints (in total 135 keypoints) on single images. It is authored by Ginés Hidalgo, Zhe Cao, Tomas Simon, Shih-En Wei, Yaadhav Raaj, Hanbyul Joo, and Yaser Sheikh. It is maintained by Ginés Hidalgo and Yaadhav Raaj. OpenPose would not be possible without the CMU Panoptic Studio dataset. We would also like to thank all the people who has helped OpenPose in any way. 15, 18 or 25-keypoint body/foot keypoint estimation, including 6 foot keypoints. Runtime invariant to number of detected people. 2x21-keypoint hand keypoint estimation. Runtime depends on number of detected people. 70-keypoint face keypoint estimation. Runtime depends on number of detected people. Input: Image, video, webcam, Flir/Point Grey, IP camera, and support to add your own custom input source (e.g., depth camera).
    Downloads: 26 This Week
    Last Update:
    See Project
  • 4
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. There is no installation or configure step needed before you can use the library. All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible.
    Downloads: 12 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 6
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    YOLO ROS

    YOLO ROS

    YOLO ROS: Real-Time Object Detection for ROS

    This is a ROS package developed for object detection in camera images. You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package, you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. We also provide branches that work under ROS Melodic, ROS Foxy and ROS2. Darknet on the CPU is fast (approximately 1.5 seconds on an Intel Core i7-6700HQ CPU @ 2.60GHz × 8) but it's like 500 times faster on GPU! You'll have to have an Nvidia GPU and you'll have to install CUDA. The CMakeLists.txt file automatically detects if you have CUDA installed or not. CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Simd

    Simd

    High performance image processing library in C++

    The Simd Library is a free open source image processing library, designed for C and C++ programmers. It provides many useful high performance algorithms for image processing such as: pixel format conversion, image scaling and filtration, extraction of statistic information from images, motion detection, object detection (HAAR and LBP classifier cascades) and classification, neural network. The algorithms are optimized with using of different SIMD CPU extensions. In particular the library supports following CPU extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX-512 for x86/x64, VMX(Altivec) and VSX(Power7) for PowerPC, NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows, Android and Linux, MSVS, G++ and Clang compilers, MSVS project and CMake build systems.
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 9
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please give it a star and consider sponsoring it. You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DETR

    DETR

    End-to-end object detection with transformers

    PyTorch training code and pretrained models for DETR (DEtection TRansformer). We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    LifeAI is an artificial intelligence system that can be applied to robotics, games, or business. It simulates key processes of our minds, such as organizing data into concepts and categories, planning actions based on their predicted outcome, and communication. LifeAI was designed to be simple, but powerful and flexible enough to have many applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. All you have to do is load your data, and AutoML takes care of the rest of the model building process. ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory of transfer learning and show how to apply it in useful projects. The development is on progress! The API will be updated soon, the more talented and light-weight API will be available in this repo! Detailed API documentation and sample jupyter notebooks that explain basic usages of API will be added!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    UniVL

    UniVL

    Official implementation for UniVL video and language training models

    UniVL is a video-language pretrain model. It is designed with four modules and five objectives for both video language understanding and generation tasks. It is also a flexible model for most of the multimodal downstream tasks considering both efficiency and effectiveness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    node-opencv

    node-opencv

    OpenCV Bindings for node.js

    OpenCV bindings for Node.js. OpenCV is the defacto computer vision library - by interfacing with it natively in node, we get powerful real time vision in js. People are using node-opencv to fly control quadrocoptors, detect faces from webcam images and annotate video streams. If you're using it for something cool, I'd love to hear about it! You'll need OpenCV 2.3.1 or newer installed before installing node-opencv. You can use opencv to read in image files. Supported formats are in the OpenCV docs, but jpgs etc are supported. There is a shortcut method for Viola-Jones Haar Cascade object detection. This can be used for face detection etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.