Browse free open source Python Stream Processing Tools and projects below. Use the toggles on the left to filter open source Python Stream Processing Tools by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 1
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic. Provide high-performance & low-latency data processing. Be portable and deploy easily (i.e., run on-prem or any cloud). Manage in-memory state for the application. Allow applications to scale as needed, even when they are live and up-and-running. The primary API for Wally is written in Pony. Wally applications are written using this Pony API.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. The container images in this repository are used to build the pre-built container images that are used when running Spark jobs on Amazon SageMaker using the SageMaker Python SDK. The pre-built images are available in the Amazon Elastic Container Registry (Amazon ECR), and this repository serves as a reference for those wishing to build their own customized Spark containers for use in Amazon SageMaker.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    StreamMine is a distributed event processing (streaming) infrastructure. You can create low-latency, fault-tolerant stream processing functionality with any stream-oriented operators that can be implemented in Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.