Compare the Top ML Model Deployment Tools for Windows as of October 2025

What are ML Model Deployment Tools for Windows?

Machine learning model deployment tools, also known as model serving tools, are platforms and software solutions that facilitate the process of deploying machine learning models into production environments for real-time or batch inference. These tools help automate the integration, scaling, and monitoring of models after they have been trained, enabling them to be used by applications, services, or products. They offer functionalities such as model versioning, API creation, containerization (e.g., Docker), and orchestration (e.g., Kubernetes), ensuring that the models can be deployed, maintained, and updated seamlessly. These tools also monitor model performance over time, helping teams detect model drift and maintain accuracy. Compare and read user reviews of the best ML Model Deployment tools for Windows currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    DVC

    DVC

    iterative.ai

    Data Version Control (DVC) is an open source version control system tailored for data science and machine learning projects. It offers a Git-like experience to organize data, models, and experiments, enabling users to manage and version images, audio, video, and text files in storage, and to structure their machine learning modeling process into a reproducible workflow. DVC integrates seamlessly with existing software engineering tools, allowing teams to define any aspect of their machine learning projects, data and model versions, pipelines, and experiments, in human-readable metafiles. This approach facilitates the use of best practices and established engineering toolsets, reducing the gap between data science and software engineering. By leveraging Git, DVC enables versioning and sharing of entire machine learning projects, including source code, configurations, parameters, metrics, data assets, and processes, by committing DVC metafiles as placeholders.
  • Previous
  • You're on page 1
  • Next