Best Neural Network Software

Compare the Top Neural Network Software as of May 2025

What is Neural Network Software?

Neural network software uses algorithms to simulate the human brain's ability to recognize patterns. It can be used for a variety of purposes, such as image and voice recognition, natural language processing, and decision making. The software is typically composed of a number of layers that contain parameters which are adjusted through training. Finally, it can be applied in various areas such as healthcare, finance, engineering and more. Compare and read user reviews of the best Neural Network software currently available using the table below. This list is updated regularly.

  • 1
    DataMelt

    DataMelt

    jWork.ORG

    DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported. DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.
    Starting Price: $0
  • 2
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.
    Starting Price: Free
  • 3
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 4
    OpenAI

    OpenAI

    OpenAI

    OpenAI’s mission is to ensure that artificial general intelligence (AGI)—by which we mean highly autonomous systems that outperform humans at most economically valuable work—benefits all of humanity. We will attempt to directly build safe and beneficial AGI, but will also consider our mission fulfilled if our work aids others to achieve this outcome. Apply our API to any language task — semantic search, summarization, sentiment analysis, content generation, translation, and more — with only a few examples or by specifying your task in English. One simple integration gives you access to our constantly-improving AI technology. Explore how you integrate with the API with these sample completions.
  • 5
    Keras

    Keras

    Keras

    Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 6
    GPT-3

    GPT-3

    OpenAI

    Our GPT-3 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. Davinci is the most capable model, and Ada is the fastest. The main GPT-3 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 7
    GPT-4

    GPT-4

    OpenAI

    GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.
    Starting Price: $0.0200 per 1000 tokens
  • 8
    GPT-3.5

    GPT-3.5

    OpenAI

    GPT-3.5 is the next evolution of GPT 3 large language model from OpenAI. GPT-3.5 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. The main GPT-3.5 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 9
    GPT-4 Turbo
    GPT-4 is a large multimodal model (accepting text or image inputs and outputting text) that can solve difficult problems with greater accuracy than any of our previous models, thanks to its broader general knowledge and advanced reasoning capabilities. GPT-4 is available in the OpenAI API to paying customers. Like gpt-3.5-turbo, GPT-4 is optimized for chat but works well for traditional completions tasks using the Chat Completions API. GPT-4 is the latest GPT-4 model with improved instruction following, JSON mode, reproducible outputs, parallel function calling, and more. Returns a maximum of 4,096 output tokens. This preview model is not yet suited for production traffic.
    Starting Price: $0.0200 per 1000 tokens
  • 10
    GPT-4o

    GPT-4o

    OpenAI

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
    Starting Price: $5.00 / 1M tokens
  • 11
    ChatGPT Plus
    We’ve trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response. ChatGPT Plus is a subscription plan for ChatGPT a conversational AI. ChatGPT Plus costs $20/month, and subscribers will receive a number of benefits: - General access to ChatGPT, even during peak times - Faster response times - GPT-4 access - ChatGPT plugins - Web-browsing with ChatGPT - Priority access to new features and improvements ChatGPT Plus is available to customers in the United States, and we will begin the process of inviting people from our waitlist over the coming weeks. We plan to expand access and support to additional countries and regions soon.
    Starting Price: $20 per month
  • 12
    Neuton AutoML

    Neuton AutoML

    Neuton.AI

    Neuton, a no-code AutoML solution, makes Machine Learning available to everyone. Explore data insights and make predictions leveraging Automated Artificial Intelligence. • NO coding • NO need for technical skills • NO need for data science knowledge Neuton provides comprehensive Explainability Office©, a unique set of tools that allow users to evaluate model quality at every stage, identify the logic behind the model analysis, understand why certain predictions have been made. • Exploratory Data Analysis • Feature Importance Matrix with class granularity • Model Interpreter • Feature Influence Matrix • Model-to-Data Relevance Indicators historical and for every prediction • Model Quality Index • Confidence Interval • Extensive list of supported metrics with Radar Diagram Neuton enables users to implement ML in days instead of months.
    Starting Price: $0
  • 13
    expoze.io

    expoze.io

    alpha.one

    As humans, we are bad at predicting what will capture our attention. Eye-tracking is helpful and can help us analyze what people see, but it is expensive and time-consuming. That’s why we created expoze.io. An online attention prediction platform that delivers actionable results validating designs in real-time to help you get your work noticed. Our platform was built by leading neuro- and data scientists. We believe creators make better decisions if they can predict and understand what really grabs attention. This way, we can assist marketing, UX/UI and CRO professionals in their creative decision-making processes. Data-driven, actionable and reliable insights that help them to get their designs noticed.
    Starting Price: €19.99/month
  • 14
    Supervisely

    Supervisely

    Supervisely

    The leading platform for entire computer vision lifecycle. Iterate from image annotation to accurate neural networks 10x faster. With our best-in-class data labeling tools transform your images / videos / 3d point cloud into high-quality training data. Train your models, track experiments, visualize and continuously improve model predictions, build custom solution within the single environment. Our self-hosted solution guaranties data privacy, powerful customization capabilities, and easy integration into your technology stack. A turnkey solution for Computer Vision: multi-format data annotation & management, quality control at scale and neural networks training in end-to-end platform. Inspired by professional video editing software, created by data scientists for data scientists — the most powerful video labeling tool for machine learning and more.
  • 15
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 16
    TFLearn

    TFLearn

    TFLearn

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
  • 17
    Deeplearning4j

    Deeplearning4j

    Deeplearning4j

    DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
  • 18
    Fabric for Deep Learning (FfDL)
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
  • 19
    MXNet

    MXNet

    The Apache Software Foundation

    A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
  • 20
    DeepPy

    DeepPy

    DeepPy

    DeepPy is a MIT licensed deep learning framework. DeepPy tries to add a touch of zen to deep learning as it. DeepPy relies on CUDArray for most of its calculations. Therefore, you must first install CUDArray. Note that you can choose to install CUDArray without the CUDA back-end which simplifies the installation process.
  • 21
    Deci

    Deci

    Deci AI

    Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.
  • 22
    Whisper

    Whisper

    OpenAI

    We’ve trained and are open-sourcing a neural net called Whisper that approaches human-level robustness and accuracy in English speech recognition. Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. We show that the use of such a large and diverse dataset leads to improved robustness to accents, background noise, and technical language. Moreover, it enables transcription in multiple languages, as well as translation from those languages into English. We are open-sourcing models and inference code to serve as a foundation for building useful applications and for further research on robust speech processing. The Whisper architecture is a simple end-to-end approach, implemented as an encoder-decoder Transformer. Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then passed into an encoder.
  • 23
    Chainer

    Chainer

    Chainer

    A powerful, flexible, and intuitive framework for neural networks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort. Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures. Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug. Comes with ChainerRLA, a library that implements various state-of-the-art deep reinforcement algorithms. Also, with ChainerCVA, a collection of tools to train and run neural networks for computer vision tasks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.
  • 24
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • Previous
  • You're on page 1
  • Next