Best Semantic Search Software

Compare the Top Semantic Search Software as of June 2025

What is Semantic Search Software?

Semantic search software is a type of technology that is designed to understand the intent and context of a query as well as extract relevant information from documents. It uses natural language processing and machine learning techniques to interpret user queries in order to figure out what the user is looking for. This type of technology helps to provide users with more accurate search results than traditional keyword-based searches. Semantic search software can be used in many different applications, such as web searching and text analytics. Compare and read user reviews of the best Semantic Search software currently available using the table below. This list is updated regularly.

  • 1
    Elasticsearch
    Elastic is a search company. As the creators of the Elastic Stack (Elasticsearch, Kibana, Beats, and Logstash), Elastic builds self-managed and SaaS offerings that make data usable in real time and at scale for search, logging, security, and analytics use cases. Elastic's global community has more than 100,000 members across 45 countries. Since its initial release, Elastic's products have achieved more than 400 million cumulative downloads. Today thousands of organizations, including Cisco, eBay, Dell, Goldman Sachs, Groupon, HP, Microsoft, Netflix, The New York Times, Uber, Verizon, Yelp, and Wikipedia, use the Elastic Stack, and Elastic Cloud to power mission-critical systems that drive new revenue opportunities and massive cost savings. Elastic has headquarters in Amsterdam, The Netherlands, and Mountain View, California; and has over 1,000 employees in more than 35 countries around the world.
  • 2
    Microsoft Purview
    Microsoft Purview is a unified data governance service that helps you manage and govern your on-premises, multicloud, and software-as-a-service (SaaS) data. Easily create a holistic, up-to-date map of your data landscape with automated data discovery, sensitive data classification, and end-to-end data lineage. Empower data consumers to find valuable, trustworthy data. Automated data discovery, lineage identification, and data classification across on-premises, multicloud, and SaaS sources. Unified map of your data assets and their relationships for more effective governance. Semantic search enables data discovery using business or technical terms. Insight into the location and movement of sensitive data across your hybrid data landscape. Establish the foundation for effective data usage and governance with Purview Data Map. Automate and manage metadata from hybrid sources. Classify data using built-in and custom classifiers and Microsoft Information Protection sensitivity labels.
    Starting Price: $0.342
  • 3
    Repustate

    Repustate

    Repustate

    Repustate provides world-class AI-powered semantic search, sentiment analysis and text analytics for organizations globally. It gives businesses the capability to decode terabytes of information and discover valuable, actionable, business insights more astutely than ever. From our esteemed clients in the Healthcare industry, to recognised leaders in Education, Banking or Governance, Repustate provides continuous deep dives into complex integrated data across industries. Our solution drives sentiment analysis and text analytics for social media listening, Voice of Customer (VOC), and video content analysis (VCA) across platforms. It encompasses the plethora of slangs, emojis and acronyms superseding the rules of formal language in social media. Whether it’s data from Youtube, IGTV, Facebook, Twitter or TikTok, or your own customer review forums, employee surveys, or EHRs, you can identify the critical aspects of your business precisely.
    Starting Price: $299 per month
  • 4
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • 5
    GraphDB

    GraphDB

    Ontotext

    *GraphDB allows you to link diverse data, index it for semantic search and enrich it via text analysis to build big knowledge graphs.* GraphDB is a highly efficient and robust graph database with RDF and SPARQL support. The GraphDB database supports a highly available replication cluster, which has been proven in a number of enterprise use cases that required resilience in data loading and query answering. If you need a quick overview of GraphDB or a download link to its latest releases, please visit the GraphDB product section. GraphDB uses RDF4J as a library, utilizing its APIs for storage and querying, as well as the support for a wide variety of query languages (e.g., SPARQL and SeRQL) and RDF syntaxes (e.g., RDF/XML, N3, Turtle).
  • 6
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 7
    Semantee

    Semantee

    Semantee.AI

    Semantee is a hassle-free easily configurable managed database optimized for semantic search. It is provided as a set of REST APIs, which can be integrated into any app in minutes and offers multilingual semantic search for applications of virtually any size both in the cloud and on-premise. The product is priced significantly more transparently and cheaply compared to most providers and is especially optimized for large-scale apps. Semantee also offers an abstraction layer over an e-shop's product catalog, enabling the store to utilize semantic search instantly without having to re-configure its database.
    Starting Price: $500
  • 8
    Superlinked

    Superlinked

    Superlinked

    Combine semantic relevance and user feedback to reliably retrieve the optimal document chunks in your retrieval augmented generation system. Combine semantic relevance and document freshness in your search system, because more recent results tend to be more accurate. Build a real-time personalized ecommerce product feed with user vectors constructed from SKU embeddings the user interacted with. Discover behavioral clusters of your customers using a vector index in your data warehouse. Describe and load your data, use spaces to construct your indices and run queries - all in-memory within a Python notebook.
  • 9
    ArangoDB

    ArangoDB

    ArangoDB

    Natively store data for graph, document and search needs. Utilize feature-rich access with one query language. Map data natively to the database and access it with the best patterns for the job – traversals, joins, search, ranking, geospatial, aggregations – you name it. Polyglot persistence without the costs. Easily design, scale and adapt your architectures to changing needs and with much less effort. Combine the flexibility of JSON with semantic search and graph technology for next generation feature extraction even for large datasets.
  • 10
    Dgraph

    Dgraph

    Hypermode

    Dgraph is an open source, low-latency, high throughput, native and distributed graph database. Designed to easily scale to meet the needs of small startups as well as large companies with massive amounts of data, DGraph can handle terabytes of structured data running on commodity hardware with low latency for real time user queries. It addresses business needs and uses cases involving diverse social and knowledge graphs, real-time recommendation engines, semantic search, pattern matching and fraud detection, serving relationship data, and serving web apps.
  • 11
    TopK

    TopK

    TopK

    TopK is a serverless, cloud-native, document database built for powering search applications. It features native support for both vector search (vectors are simply another data type) and keyword search (BM25-style) in a single, unified system. With its powerful query expression language, TopK enables you to build reliable search applications (semantic search, RAG, multi-modal, you name it) without juggling multiple databases or services. Our unified retrieval engine will evolve to support document transformation (automatically generate embeddings), query understanding (parse metadata filters from user query), and adaptive ranking (provide more relevant results by sending “relevance feedback” back to TopK) under one unified roof.
  • Previous
  • You're on page 1
  • Next