Open Source Python Machine Learning Software

Python Machine Learning Software

View 447 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 1
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 2
    Pedalboard

    Pedalboard

    A Python library for audio

    pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports the most popular audio file formats and a number of common audio effects out of the box and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects. pedalboard was built by Spotify’s Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify’s AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    CodeContests

    CodeContests

    Large dataset of coding contests designed for AI and ML model training

    CodeContests, developed by Google DeepMind, is a large-scale competitive programming dataset designed for training and evaluating machine learning models on code generation and problem solving. This dataset played a central role in the development of AlphaCode, DeepMind’s model for solving programming problems at a human-competitive level, as published in Science. CodeContests aggregates problems and human-written solutions from multiple programming competition platforms, including AtCoder, Codeforces, CodeChef, Aizu, and HackerEarth. Each problem includes structured metadata, problem descriptions, paired input/output test cases, and multiple correct and incorrect solutions in various programming languages. The dataset is distributed in Riegeli format using Protocol Buffers, with separate training, validation, and test splits for reproducible machine learning experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    openModeller is a complete C++ framework for species potential distribution modelling. The project also includes a graphical user interface, a web service interface and an API for Python.
    Downloads: 21 This Week
    Last Update:
    See Project
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 5
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 19 This Week
    Last Update:
    See Project
  • 6

    Arabic Corpus

    Text categorization, arabic language processing, language modeling

    The Arabic Corpus {compiled by Dr. Mourad Abbas ( http://sites.google.com/site/mouradabbas9/corpora ) The corpus Khaleej-2004 contains 5690 documents. It is divided to 4 topics (categories). The corpus Watan-2004 contains 20291 documents organized in 6 topics (categories). Researchers who use these two corpora would mention the two main references: (1) For Watan-2004 corpus ---------------------- M. Abbas, K. Smaili, D. Berkani, (2011) Evaluation of Topic Identification Methods on Arabic Corpora,JOURNAL OF DIGITAL INFORMATION MANAGEMENT,vol. 9, N. 5, pp.185-192. 2) For Khaleej-2004 corpus --------------------------------- M. Abbas, K. Smaili (2005) Comparison of Topic Identification Methods for Arabic Language, RANLP05 : Recent Advances in Natural Language Processing ,pp. 14-17, 21-23 september 2005, Borovets, Bulgary. More useful references to check: ------------------------------------------- https://sites.google.com/site/mouradabbas9/corpora
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is available both for Unix and Windows platforms (a dedicated platform archive is available on request). Note : if you have downloaded version 3.12 before the 8th of february, a patch exists for a minor bug on TOutputFileKey file, don't hesitate to ask us.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    mlpy

    mlpy

    Machine Learning Python

    mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. mlpy provides high-level functions and classes allowing, with few lines of code, the design of rich workflows for classification, regression, clustering and feature selection. mlpy is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 3. mlpy is available both for Python >=2.6 and Python 3.X.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    This project consists in a set of challenges to recognize images acquired from 3d Lasers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    Savant

    Python Computer Vision & Video Analytics Framework With Batteries Incl

    Savant is an open-source, high-level framework for building real-time, streaming, highly efficient multimedia AI applications on the Nvidia stack. It helps to develop dynamic, fault-tolerant inference pipelines that utilize the best Nvidia approaches for data center and edge accelerators. Savant is built on DeepStream and provides a high-level abstraction layer for building inference pipelines. It is designed to be easy to use, flexible, and scalable. It is a great choice for building smart CV and video analytics applications for cities, retail, manufacturing, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Python framework for video processing and content analysis using CUDA for acceleration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Yann
    Yann is Yet Another Neural Network. Yann is a library to create fast neural networks. It is also a GUI to easily create, edit, train, execute and investigate networks. Multiple topologies, runtime properties and ensemble learning are supported.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AStro inFER - a rule miner and executer
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    a distributed engine for abstract neural network development via natural-language programming
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next