Open Source Python Artificial Intelligence Software

Python Artificial Intelligence Software

View 11467 business solutions

Browse free open source Python Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source Python Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 1
    Qwen2.5-Coder

    Qwen2.5-Coder

    Qwen2.5-Coder is the code version of Qwen2.5, the large language model

    Qwen2.5-Coder, developed by QwenLM, is an advanced open-source code generation model designed for developers seeking powerful and diverse coding capabilities. It includes multiple model sizes—ranging from 0.5B to 32B parameters—providing solutions for a wide array of coding needs. The model supports over 92 programming languages and offers exceptional performance in generating code, debugging, and mathematical problem-solving. Qwen2.5-Coder, with its long context length of 128K tokens, is ideal for a variety of use cases, from simple code assistants to complex programming scenarios, matching the capabilities of models like GPT-4o.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    The Google Cloud Developer's Cheat Sheet

    The Google Cloud Developer's Cheat Sheet

    Cheat sheet for Google Cloud developers

    Every product in the Google Cloud family described in <=4 words (with liberal use of hyphens and slashes) by the Google Developer Relations Team. This list only includes products that are publicly available. There are several products in pre-release/private-alpha that will not be included until they go public beta or GA. Many of these products have a free tier. There is also a free trial that will enable you try almost everything. API platforms and ecosystems, developer and management tools, identity and security tools, gaming, networking, data and analytics tools, database, storage, gaming tools, and many more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    commit-autosuggestions

    commit-autosuggestions

    A tool that AI automatically recommends commit messages

    This is implementation of CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model. CommitBERT is accepted in ACL workshop : NLP4Prog. Have you ever hesitated to write a commit message? Now get a commit message from Artificial Intelligence! CodeBERT: A Pre-Trained Model for Programming and Natural Languages introduces a pre-trained model in a combination of Program Language and Natural Language(PL-NL). It also introduces the problem of converting code into natural language (Code Documentation Generation). We can use CodeBERT to create a model that generates a commit message when code is added. However, most code changes are not made only by add of the code, and some parts of the code are deleted. We plan to slowly conquer languages that are not currently supported. To run this project, you need a flask-based inference server (GPU) and a client (commit module). If you don't have a GPU, don't worry, you can use it through Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.