Browse free open source Graphics software and projects below. Use the toggles on the left to filter open source Graphics software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    libvips

    libvips

    A fast image processing library with low memory needs

    libvips is a demand-driven, horizontally threaded image processing library. Compared to similar libraries, libvips runs quickly and uses little memory. libvips is licensed under the LGPL 2.1+. It has around 300 operations covering arithmetic, histograms, convolution, morphological operations, frequency filtering, colour, resampling, statistics and others. It supports a large range of numeric types, from 8-bit int to 128-bit complex. Images can have any number of bands. It supports a good range of image formats, including JPEG, JPEG2000, JPEG-XL, TIFF, PNG, WebP, HEIC, AVIF, FITS, Matlab, OpenEXR, PDF, SVG, HDR, PPM / PGM / PFM, CSV, GIF, Analyze, NIfTI, DeepZoom, and OpenSlide. It can also load images via ImageMagick or GraphicsMagick, letting it work with formats like DICOM. It comes with bindings for C, C++, and the command-line. Full bindings are available for Ruby, Python, PHP, C# / .NET, Go, and Lua.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. With Kornia we fill the gap between classical and deep computer vision that implements standard and advanced vision algorithms for AI. Our libraries and initiatives are always according to the community needs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please give it a star and consider sponsoring it. You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    Neuroph OCR - Handwriting Recognition
    Neuroph OCR - Handwriting Recognition is developed to recognize hand written letter and characters. It's engine derived's from the Java Neural Network Framework - Neuroph and as such it can be used as a standalone project or a Neuroph plug in.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. This can be controlled by the loss weights argument. The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information. After preprocessing the model, TensorSpace supports the visualization of pre-trained models from TensorFlow, Keras and TensorFlow.js. TensorSpace is a neural network 3D visualization framework designed for not only showing the basic model structure but also presenting the processes of internal feature abstractions, intermediate data manipulations and final inference generations. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    This page will introduce the general concept of point clouds and illustrate the capabilities of pyntcloud as a point cloud processing tool. Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and cheaply) acquired from different sources. pyntcloud enables simple and interactive exploration of point cloud data, regardless of which sensor was used to generate it or what the use case is. Although it was built for being used on Jupyter Notebooks, the library is suitable for other kinds of uses. pyntcloud is composed of several modules (as independent as possible) that englobe common point cloud processing operations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 19 This Week
    Last Update:
    See Project
  • 11

    Spectral Python

    A python module for hyperspectral image processing

    Spectral Python (SPy) is a python package for reading, viewing, manipulating, and classifying hyperspectral image (HSI) data. SPy includes functions for clustering, dimensionality reduction, supervised classification, and more.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators. Operators include machine learning (WEKA, MOA, MEKA) and image processing (ImageJ, JAI, BoofCV, LIRE and Gnuplot). R available using Rserve. WEKA webservice allows other frameworks to use WEKA models. Fast prototyping with Groovy and Jython. Read/write support for various databases and spreadsheet applications.
    Leader badge
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    Overhead Imagery Research Data Set (OIRDS) - an annotated data library & tools to aid in the development of computer vision algorithms
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    A C# library for use in image processing and computer vision research.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    ALN machine learning
    Customizable software to smoothly fit non-linear, high-dimensional data. SDK in C with C++ wrappers, plus demo applications (all under LGPL). Versions under Windows and Linux already operational. Further progress depends on your imagination!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    An open source optical flow algorithm framework for scientists and engineers alike.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Keras.js

    Keras.js

    Run Keras models in the browser, with GPU support using WebGL

    Run Keras models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc. Check out the demos/ directory for real examples running Keras.js in VueJS. Library version compatibility, Keras 2.1.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    LBP in multiple platforms

    LBP implementation in multiple computing platforms (ARM,GPU, DSP...)

    The Local Binary Pattern (LBP) is a texture operator that is used in several different computer vision applications and implemented in a variety of platforms. When selecting a suitable LBP implementation platform, the specific application and its requirements in terms of performance, size, energy efficiency, cost and developing time has to be carefully considered. This is a software toolbox that collects software implementations of the Local Binary Pattern operator in several platforms: - OpenCL for CPU & GPU - OpenCL for GPU (branchless) - C code optimized for ARM - OpenGL ES 2.0 shaders mobile GPUs - C code for TI C64x DSP core (branchless) - C code for TTA processor synthesis If you use the code somewhere, please cite: Bordallo López M., Nieto A., Boutellier J., Hannuksela J., and Silvén O. "Evaluation of real-time LBP computing in multiple architectures," Journal of Real Time Image Processing, 2014
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The toolbox provides state-of-the-art methods in inpainting/matting/super-resolution/generation. Note that MMSR has been merged into this repo, as a part of MMEditing. With elaborate designs of the new framework and careful implementations, hope MMEditing could provide a better experience. When installing PyTorch in Step 2, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Qt Handwriting Recognizing it's a simple Qt GUI interface of a artificial neural network to provide handwrite recognition. This project use FANN (Fast Artificial Neural Network) on first approach.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Surface Defect Detection Dataset Papers

    Surface Defect Detection Dataset Papers

    Constantly summarizing open source dataset and critical papers

    At present, surface defect equipment based on machine vision has widely replaced artificial visual inspection in various industrial fields, including 3C, automobiles, home appliances, machinery manufacturing, semiconductors and electronics, chemical, pharmaceutical, aerospace, light industry and other industries. Traditional surface defect detection methods based on machine vision often use conventional image processing algorithms or artificially designed features plus classifiers. Generally speaking, imaging schemes are usually designed by using the different properties of the inspected surface or defects. A reasonable imaging scheme helps to obtain images with uniform illumination and clearly reflect the surface defects of the object. In recent years, many defect detection methods based on deep learning have also been widely used in various industrial scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Training Image Operators from Samples

    Tools to train Image Operators automatically from a set of samples.

    TRIOS - Training Image Operators from Samples is a set of tools to bring Image Processing closer to scientists in general. It is capable of estimating an operator between two images using only pairs of samples that contain an input image and the desired output. The operator is saved to a file and can be applied to any image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    libcrn is document image processing library written in C++11 for Linux, Windows, Mac OsX and Google Android. It is a toolbox that allows to create easily software such as OCRs and layout analysis tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    With miao3d you can train a specific Gaussian Markov Random Field (GMRF) that then can be used to estimate a depthmap ("3D"), given an image ("2D"). A GUI allows inspection of the image + depthmap.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    New Python bindings for the popular OpenCV image processing library.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next