Open Source Python Large Language Models (LLM) for Linux

Python Large Language Models (LLM) for Linux

View 69 business solutions

Browse free open source Python Large Language Models (LLM) for Linux and projects below. Use the toggles on the left to filter open source Python Large Language Models (LLM) for Linux by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 401 This Week
    Last Update:
    See Project
  • 2
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 293 This Week
    Last Update:
    See Project
  • 3
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 146 This Week
    Last Update:
    See Project
  • 4
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 62 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Qwen3

    Qwen3

    Qwen3 is the large language model series developed by Qwen team

    Qwen3 is a cutting-edge large language model (LLM) series developed by the Qwen team at Alibaba Cloud. The latest updated version, Qwen3-235B-A22B-Instruct-2507, features significant improvements in instruction-following, reasoning, knowledge coverage, and long-context understanding up to 256K tokens. It delivers higher quality and more helpful text generation across multiple languages and domains, including mathematics, coding, science, and tool usage. Various quantized versions, tools/pipelines provided for inference using quantized formats (e.g. GGUF, etc.). Coverage for many languages in training and usage, alignment with human preferences in open-ended tasks, etc.
    Downloads: 56 This Week
    Last Update:
    See Project
  • 6
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 7
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 9
    Qwen3-Coder

    Qwen3-Coder

    Qwen3-Coder is the code version of Qwen3

    Qwen3-Coder is the latest and most powerful agentic code model developed by the Qwen team at Alibaba Cloud. Its flagship version, Qwen3-Coder-480B-A35B-Instruct, features a massive 480 billion-parameter Mixture-of-Experts architecture with 35 billion active parameters, delivering top-tier performance on coding and agentic tasks. This model sets new state-of-the-art benchmarks among open models for agentic coding, browser-use, and tool-use, matching performance comparable to leading models like Claude Sonnet. Qwen3-Coder supports an exceptionally long context window of 256,000 tokens, extendable to 1 million tokens using Yarn, enabling repository-scale code understanding and generation. It is capable of handling 358 programming languages, from common to niche, making it versatile for a wide range of development environments. The model integrates a specially designed function call format and supports popular platforms such as Qwen Code and CLINE for agentic coding workflows.
    Downloads: 21 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    Qwen-Image is a powerful 20-billion parameter foundation model designed for advanced image generation and precise editing, with a particular strength in complex text rendering across diverse languages, especially Chinese. Built on the MMDiT architecture, it achieves remarkable fidelity in integrating text seamlessly into images while preserving typographic details and layout coherence. The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 11
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and reinforcement learning; supports benchmarks like web search, document understanding, question answering, “agentic” tasks; provides inference tools, evaluation scripts, and “web agent” style interfaces. The aim is to enable more autonomous, agentic models that can perform sustained knowledge gathering, reasoning, and synthesis across multiple modalities (web, files, etc.).
    Downloads: 10 This Week
    Last Update:
    See Project
  • 12
    Qwen

    Qwen

    The official repo of Qwen chat & pretrained large language model

    Qwen is a series of large language models developed by Alibaba Cloud, consisting of various pretrained versions like Qwen-1.8B, Qwen-7B, Qwen-14B, and Qwen-72B. These models, which range from smaller to larger configurations, are designed for a wide range of natural language processing tasks. They are openly available for research and commercial use, with Qwen's code and model weights shared on GitHub. Qwen's capabilities include text generation, comprehension, and conversation, making it a versatile tool for developers looking to integrate advanced AI functionalities into their applications.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 13
    ChatGLM-6B

    ChatGLM-6B

    ChatGLM-6B: An Open Bilingual Dialogue Language Model

    ChatGLM-6B is an open bilingual (Chinese + English) conversational language model based on the GLM architecture, with approximately 6.2 billion parameters. The project provides inference code, demos (command line, web, API), quantization support for lower memory deployment, and tools for finetuning (e.g., via P-Tuning v2). It is optimized for dialogue and question answering with a balance between performance and deployability in consumer hardware settings. Support for quantized inference (INT4, INT8) to reduce GPU memory requirements. Automatic mode switching between precision/memory tradeoffs (full/quantized).
    Downloads: 8 This Week
    Last Update:
    See Project
  • 14
    LLaMA-Factory

    LLaMA-Factory

    Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)

    LLaMA-Factory is a fine-tuning and training framework for Meta's LLaMA language models. It enables researchers and developers to train and customize LLaMA models efficiently using advanced optimization techniques.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 15
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    llama.cpp Python Bindings

    llama.cpp Python Bindings

    Python bindings for llama.cpp

    llama-cpp-python provides Python bindings for llama.cpp, enabling the integration of LLaMA (Large Language Model Meta AI) language models into Python applications. This facilitates the use of LLaMA's capabilities in natural language processing tasks within Python environments.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 19
    LiteLLM

    LiteLLM

    lightweight package to simplify LLM API calls

    Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.] liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response. Streaming is supported for OpenAI, Azure, Anthropic, and Huggingface models.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    MetaGPT

    MetaGPT

    The Multi-Agent Framework

    The Multi-Agent Framework: Given one line Requirement, return PRD, Design, Tasks, Repo. Assign different roles to GPTs to form a collaborative software entity for complex tasks. MetaGPT takes a one-line requirement as input and outputs user stories / competitive analysis/requirements/data structures / APIs / documents, etc. Internally, MetaGPT includes product managers/architects/project managers/engineers. It provides the entire process of a software company along with carefully orchestrated SOPs.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    OpenDAN

    OpenDAN

    OpenDAN is an open source Personal AI OS

    OpenDAN is an open-source Personal AI OS , that consolidates various AI modules in one place for your personal use. The goal of OpenDAN (Open and Do Anything Now with AI) is to create a Personal AI OS , which provides a runtime environment for various Al modules as well as protocols for interoperability between them. With OpenDAN, users can securely collaborate with various AI modules using their private data to create powerful personal AI agents, such as butlers, lawyers, doctors, teachers, assistants, girl or boyfriends.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 22
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 23
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will return a DataFrame containing only those rows.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 25
    PrivateGPT

    PrivateGPT

    Interact with your documents using the power of GPT

    PrivateGPT is a production-ready, privacy-first AI system that allows querying of uploaded documents using LLMs, operating completely offline in your own environment. It provides contextual generative AI capabilities without sending data externally. Now maintained under Zylon.ai with enterprise deployment options (air gapped, cloud, or on-prem).
    Downloads: 5 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.