Open Source Python Large Language Models (LLM) for Linux - Page 3

Python Large Language Models (LLM) for Linux

View 72 business solutions

Browse free open source Python Large Language Models (LLM) for Linux and projects below. Use the toggles on the left to filter open source Python Large Language Models (LLM) for Linux by OS, license, language, programming language, and project status.

  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation (exceeding 8,000 tokens), and structured data comprehension, such as tables and JSON formats. They support context lengths up to 128,000 tokens and offer multilingual capabilities in over 29 languages, including Chinese, English, French, Spanish, and more. The models are open-source under the Apache 2.0 license, with resources and documentation available on platforms like Hugging Face and ModelScope.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Qwen-Audio

    Qwen-Audio

    Chat & pretrained large audio language model proposed by Alibaba Cloud

    Qwen-Audio is a large audio-language model developed by Alibaba Cloud, built to accept various types of audio input (speech, natural sounds, music, singing) along with text input, and output text. There is also an instruction-tuned version called Qwen-Audio-Chat which supports conversational interaction (multi-round), audio + text input, creative tasks and reasoning over audio. It uses multi-task training over many different audio tasks (30+), and achieves strong multi-benchmarks performance without task-specific fine‐tuning. It includes features such as flexible multi-run chat, audio understanding/reasoning, music appreciation, and also tool usage (e.g. voice editing).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage (~50%) while maintaining precision. High benchmarking performance on tasks like MMLU, MATH, CMMLU, C-Eval, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    files-to-prompt

    files-to-prompt

    Concatenate a directory full of files into a single prompt

    files-to-prompt is a Python command-line tool that takes one or more files or entire directories and concatenates their contents into a single, LLM-friendly prompt. It walks the directory tree, outputting each file preceded by its relative path and a separator, so a model can understand which content came from where. The tool is aimed at workflows where you want to ask an LLM questions about a whole codebase, documentation set, or notes folder without manually copying files together. It includes rich filtering controls, letting you limit by extension, include or skip hidden files, and ignore paths that match glob patterns or .gitignore rules. The output format is flexible: you can emit plain text, Markdown with fenced code blocks, or a Claude-XML style format designed for structured multi-file prompts. It can read file paths from stdin (including NUL-separated paths), which makes it easy to combine with find, rg, or other shell tools.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    llama2.c

    llama2.c

    Inference Llama 2 in one file of pure C

    llama2.c is a minimalist implementation of the Llama 2 language model architecture designed to run entirely in pure C. Created by Andrej Karpathy, this project offers an educational and lightweight framework for performing inference on small Llama 2 models without external dependencies. It provides a full training and inference pipeline: models can be trained in PyTorch and later executed using a concise 700-line C program (run.c). While it can technically load Meta’s official Llama 2 models, current support is limited to fp32 precision, meaning practical use is capped at models up to around 7B parameters. The goal of llama2.c is to demonstrate how a compact and transparent implementation can perform meaningful inference even with small models, emphasizing simplicity, clarity, and accessibility. The project builds upon lessons from nanoGPT and takes inspiration from llama.cpp, focusing instead on minimalism and educational value over large-scale performance.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    llm.c

    llm.c

    LLM training in simple, raw C/CUDA

    llm.c is a minimalist, systems-level implementation of a small transformer-based language model in C that prioritizes clarity and educational value. By stripping away heavy frameworks, it exposes the core math and memory flows of embeddings, attention, and feed-forward layers. The code illustrates how to wire forward passes, losses, and simple training or inference loops with direct control over arrays and buffers. Its compact design makes it easy to trace execution, profile hotspots, and understand the cost of each operation. Portability is a goal: it aims to compile with common toolchains and run on modest hardware for small experiments. Rather than delivering a production-grade stack, it serves as a reference and learning scaffold for people who want to “see the metal” behind LLMs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging Face, allowing for easy access and customization. FinGPT's capabilities are extended by its ability to integrate with existing financial systems and enhance predictive analytics in finance.
    Leader badge
    Downloads: 20 This Week
    Last Update:
    See Project
  • 8
    ChatGLM2-6B

    ChatGLM2-6B

    ChatGLM2-6B: An Open Bilingual Chat LLM

    ChatGLM2-6B is the second-gen Chinese-English conversational LLM from ZhipuAI/Tsinghua. It upgrades the base model with GLM’s hybrid pretraining objective, 1.4 TB bilingual data, and preference alignment—delivering big gains on MMLU, CEval, GSM8K, and BBH. The context window extends up to 32K (FlashAttention), and Multi-Query Attention improves speed and memory use. The repo includes Python APIs, CLI & web demos, OpenAI-style/FASTAPI servers, and quantized checkpoints for lightweight local deployment on GPUs or CPU/MPS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Chinese-LLaMA-Alpaca 2

    Chinese-LLaMA-Alpaca 2

    Chinese LLaMA-2 & Alpaca-2 Large Model Phase II Project

    This project is developed based on the commercially available large model Llama-2 released by Meta. It is the second phase of the Chinese LLaMA&Alpaca large model project. The Chinese LLaMA-2 base model and the Alpaca-2 instruction fine-tuning large model are open-sourced. These models expand and optimize the Chinese vocabulary on the basis of the original Llama-2, use large-scale Chinese data for incremental pre-training, and further improve the basic semantics and command understanding of Chinese. Performance improvements. The related model supports FlashAttention-2 training, supports 4K context and can be extended up to 18K+ through the NTK method.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Coconut

    Coconut

    Training Large Language Model to Reason in a Continuous Latent Space

    Coconut is the official PyTorch implementation of the research paper “Training Large Language Models to Reason in a Continuous Latent Space.” The framework introduces a novel method for enhancing large language models (LLMs) with continuous latent reasoning steps, enabling them to generate and refine reasoning chains within a learned latent space rather than relying solely on discrete symbolic reasoning. It supports training across multiple reasoning paradigms—including standard Chain-of-Thought (CoT), no-thought, and hybrid configurations—using configurable training stages and latent representations. The repository is built with Hugging Face Transformers, PyTorch Distributed, and Weights & Biases (wandb) for logging, supporting large-scale experiments on mathematical and logical reasoning datasets such as GSM8K, ProntoQA, and ProsQA.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    CodeLlama

    CodeLlama

    Inference code for CodeLlama models

    Code Llama is a family of Llama-based code models optimized for programming tasks such as code generation, completion, and repair, with variants specialized for base coding, Python, and instruction following. The repo documents the sizes and capabilities (e.g., 7B, 13B, 34B) and highlights features like infilling and large input context to support real IDE workflows. It targets both general software synthesis and language-specific productivity, offering strong performance among open models at release time. Typical usage includes prompt-driven generation, function or class completion, and zero-shot adherence to natural-language instructions about code changes. The ecosystem provides multiple distributions (e.g., HF format) so developers can integrate with standard toolchains and serving stacks. As part of the broader Llama effort, Code Llama complements instruction-tuned chat models by focusing on code-centric tasks and editor integrations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task. This programming complexity prevents people who are experts in other domains from benefiting from these models. Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    FastEdit

    FastEdit

    Editing large language models within 10 seconds

    FastEdit focuses on rapid “model editing,” letting you surgically update facts or behaviors in an LLM without full fine-tuning. It implements practical editing algorithms that insert or revise knowledge with targeted parameter updates, aiming to preserve model quality outside the edited scope. This approach is valuable when you need urgent corrections—think product names, APIs, or fast-changing facts—without retraining on large corpora. The repository provides evaluation harnesses so you can measure locality (does the change stay contained?) and generalization (does the change apply where it should?). It’s structured for repeatable experiments, making side-by-side comparisons of editing methods and hyperparameters straightforward. For applied teams, FastEdit offers a toolbox to keep models current and compliant while minimizing collateral damage to overall performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The GLM-Z1-32B-0414 line adds deeper mathematical, coding, and logical reasoning via extended reinforcement learning and pairwise ranking feedback, while GLM-Z1-Rumination-32B-0414 introduces a “rumination” mode that performs longer, tool-using deep research for complex, open-ended tasks. A lightweight GLM-Z1-9B-0414 brings many of these techniques to a smaller model, targeting strong reasoning under tight resource budgets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Gemma

    Gemma

    Gemma open-weight LLM library, from Google DeepMind

    Gemma, developed by Google DeepMind, is a family of open-weights large language models (LLMs) built upon the research and technology behind Gemini. This repository provides the official implementation of the Gemma PyPI package, a JAX-based library that enables users to load, interact with, and fine-tune Gemma models. The framework supports both text and multi-modal input, allowing natural language conversations that incorporate visual content such as images. It includes APIs for conversational sampling, parameter management, and integration with fine-tuning methods like LoRA. The Gemma library can operate efficiently on CPUs, GPUs, or TPUs, with recommended configurations depending on model size. Through included tutorials and Colab notebooks, users can explore examples covering sampling, multi-modal interactions, and fine-tuning workflows. By providing accessible open-weight models, Gemma enables researchers and developers to experiment with state-of-the-art LLM architectures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    HumanEval

    HumanEval

    Code for the paper "Evaluating Large Language Models Trained on Code"

    human-eval is a benchmark dataset and evaluation framework created by OpenAI for measuring the ability of language models to generate correct code. It consists of hand-written programming problems with unit tests, designed to assess functional correctness rather than superficial metrics like text similarity. Each task includes a natural language prompt and a function signature, requiring the model to generate an implementation that passes all provided tests. The benchmark has become a standard for evaluating code generation models, including those in the Codex and GPT families. Researchers can use the dataset to run reproducible comparisons across models and track improvements in functional code synthesis. By focusing on correctness through execution, human-eval provides a rigorous and practical way to evaluate programming capabilities in AI systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models, utilities, and docs. Even as a deprecated repo, it documents the transition path and preserves references that clarify how Llama 3 releases map into the current ecosystem. Practically, it functioned as a bridge between Llama 2 and later Llama releases by standardizing distribution and starter code for inference and fine-tuning. Teams still treat it as historical reference material for version lineage and migration notes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    LangCheck

    LangCheck

    Simple, Pythonic building blocks to evaluate LLM applications

    Simple, Pythonic building blocks to evaluate LLM applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    MiniMind

    MiniMind

    Train a 26M-parameter GPT from scratch in just 2h

    minimind is a framework that enables users to train a 26-million-parameter GPT (Generative Pre-trained Transformer) model from scratch in approximately two hours. It provides a streamlined process for data preparation, model training, and evaluation, making it accessible for individuals and organizations to develop their own language models without extensive computational resources.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    OpenFlamingo

    OpenFlamingo

    An open-source framework for training large multimodal models

    Welcome to our open source version of DeepMind's Flamingo model! In this repository, we provide a PyTorch implementation for training and evaluating OpenFlamingo models. We also provide an initial OpenFlamingo 9B model trained on a new Multimodal C4 dataset (coming soon). Please refer to our blog post for more details. This repo is still under development, and we hope to release better-performing and larger OpenFlamingo models soon. If you have any questions, please feel free to open an issue. We also welcome contributions! We provide an initial OpenFlamingo 9B model using a CLIP ViT-Large vision encoder and a LLaMA-7B language model. In general, we support any CLIP vision encoder. For the language model, we support LLaMA, OPT, GPT-Neo, GPT-J, and Pythia models. OpenFlamingo is a multimodal language model that can be used for a variety of tasks. It is trained on a large multimodal dataset.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios. Qwen-VL supports multilingual inputs and conversation (e.g. Chinese, English), and is aimed at tasks like image captioning, question answering on images (VQA, DocVQA), grounding (detecting objects or regions from textual queries), etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical benchmarks and exams; the 72B-Instruct model achieves state-of-the-art results among open source models on many English and Chinese math tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Super Easy AI Installer Tool

    Super Easy AI Installer Tool

    Application that simplifies the installation of AI-related projects

    "Super Easy AI Installer Tool" is a user-friendly application that simplifies the installation process of AI-related repositories for users. The tool is designed to provide an easy-to-use solution for accessing and installing AI repositories with minimal technical hassle to none the tool will automatically handle the installation process, making it easier for users to access and use AI tools. "Super Easy AI Installer Tool" is currently in early development phase and may have a few bugs. But remains a great solution for users with minimal technical knowledge or expertise. Fixes underway. A tool that can generate animations and music from text, ideal for producing short videos and GIFs, as well as creating brief cinematic scenes.
    Downloads: 1 This Week
    Last Update:
    See Project