Best Data Engineering Tools

Compare the Top Data Engineering Tools as of June 2025

What are Data Engineering Tools?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools currently available using the table below. This list is updated regularly.

  • 1
    Switchboard

    Switchboard

    Switchboard

    Aggregate disparate data at scale, reliably and accurately, to make better business decisions with Switchboard, a data engineering automation platform driven by business teams. Uncover timely insights and accurate forecasts. No more outdated manual reports and error-prone pivot tables that don’t scale. Directly pull and reconfigure data sources in the right formats in a no-code environment. Reduce your dependency on the engineering team. Automatic monitoring and backfilling make API outages, bad schemas, and missing data a thing of the past. Not a dumb API, but an ecosystem of pre-built connectors that are easily and quickly adapted to actively transform raw data into a strategic asset. Our team of experts has worked in data teams at Google and Facebook. We’ve automated those best practices to elevate your data game. A data engineering automation platform with authoring and workflow processes proven to scale with terabytes of data.
  • Previous
  • You're on page 1
  • Next