Best Data Replication Software

Compare the Top Data Replication Software as of October 2025

What is Data Replication Software?

Data replication software is used to store data in multiple locations with the purpose of optimizing the availability and accessibility of files through databases. Compare and read user reviews of the best Data Replication software currently available using the table below. This list is updated regularly.

  • 1
    FairCom DB

    FairCom DB

    FairCom Corporation

    FairCom DB is ideal for large-scale, mission-critical, core-business applications that require performance, reliability and scalability that cannot be achieved by other databases. FairCom DB delivers predictable high-velocity transactions and massively parallel big data analytics. It empowers developers with NoSQL APIs for processing binary data at machine speed and ANSI SQL for easy queries and analytics over the same binary data. Among the companies that take advantage of the flexibility of FairCom DB is Verizon, who recently chose FairCom DB as an in-memory database for its Verizon Intelligent Network Control Platform Transaction Server Migration. FairCom DB is an advanced database engine that gives you a Continuum of Control to achieve unprecedented performance with the lowest total cost of ownership (TCO). You do not conform to FairCom DB…FairCom DB conforms to you. With FairCom DB, you are not forced to conform your needs to meet the limitations of the database.
  • 2
    Voldemort

    Voldemort

    Voldemort

    Voldemort is not a relational database, it does not attempt to satisfy arbitrary relations while satisfying ACID properties. Nor is it an object database that attempts to transparently map object reference graphs. Nor does it introduce a new abstraction such as document-orientation. It is basically just a big, distributed, persistent, fault-tolerant hash table. For applications that can use an O/R mapper like active-record or hibernate this will provide horizontal scalability and much higher availability but at great loss of convenience. For large applications under internet-type scalability pressure, a system may likely consist of a number of functionally partitioned services or APIs, which may manage storage resources across multiple data centers using storage systems which may themselves be horizontally partitioned. For applications in this space, arbitrary in-database joins are already impossible since all the data is not available in any single database.
  • Previous
  • You're on page 1
  • Next