Compare the Top Document Databases in Japan as of November 2025

What are Document Databases in Japan?

Document databases are a type of NoSQL database designed to store, manage, and retrieve semi-structured data in the form of documents, typically using formats like JSON, BSON, or XML. Unlike traditional relational databases, document databases do not require a fixed schema, allowing for greater flexibility in handling diverse and evolving data structures. Each document in the database can contain different fields and data types, making it ideal for applications where data is complex and varied. These databases excel at scaling horizontally, making them well-suited for handling large volumes of data across distributed systems. Document databases are commonly used in modern web and mobile applications, where they provide efficient storage and fast access to rich, nested data structures. Compare and read user reviews of the best Document Databases in Japan currently available using the table below. This list is updated regularly.

  • 1
    MongoDB Atlas
    The most innovative cloud database service on the market, with unmatched data distribution and mobility across AWS, Azure, and Google Cloud, built-in automation for resource and workload optimization, and so much more. MongoDB Atlas is the global cloud database service for modern applications. Deploy fully managed MongoDB across AWS, Google Cloud, and Azure with best-in-class automation and proven practices that guarantee availability, scalability, and compliance with the most demanding data security and privacy standards. The best way to deploy, run, and scale MongoDB in the cloud. MongoDB Atlas offers built-in security controls for all your data. Enable enterprise-grade features to integrate with your existing security protocols and compliance standards. With MongoDB Atlas, your data is protected with preconfigured security features for authentication, authorization, encryption, and more.
    Starting Price: $0.08/hour
    View Software
    Visit Website
  • 2
    CapturePoint
    Low to High-Volume Scanning and Automation. As a front-end system CapturePoint can simplify the way you process invoices. In companies with a larger accounts payable department this can be the difference between hiring additional dedicated processing staff, or gaining efficiencies that let you be more productive and reduce overhead. The vast paperwork associated with the health care industry all but necessitates a more efficient, streamlined system for organizing everything from patient records to HIPAA forms or examination notes. Ademero’s Document Scanning Software systems are the go-to solutions for today’s healthcare industry. Besides automatically identifying the types of documents within the mountains of paperwork in the legal document realm that also demand the identification of matter numbers and filing to the appropriate case structure, CapturePoint can also take care of employment applications, health insurance claims, tax forms, and a whole host of internal documents.
    Starting Price: $35 per month
  • 3
    ArangoDB

    ArangoDB

    ArangoDB

    Natively store data for graph, document and search needs. Utilize feature-rich access with one query language. Map data natively to the database and access it with the best patterns for the job – traversals, joins, search, ranking, geospatial, aggregations – you name it. Polyglot persistence without the costs. Easily design, scale and adapt your architectures to changing needs and with much less effort. Combine the flexibility of JSON with semantic search and graph technology for next generation feature extraction even for large datasets.
  • 4
    TopK

    TopK

    TopK

    TopK is a serverless, cloud-native, document database built for powering search applications. It features native support for both vector search (vectors are simply another data type) and keyword search (BM25-style) in a single, unified system. With its powerful query expression language, TopK enables you to build reliable search applications (semantic search, RAG, multi-modal, you name it) without juggling multiple databases or services. Our unified retrieval engine will evolve to support document transformation (automatically generate embeddings), query understanding (parse metadata filters from user query), and adaptive ranking (provide more relevant results by sending “relevance feedback” back to TopK) under one unified roof.
  • Previous
  • You're on page 1
  • Next