Best Real-Time Analytic Databases

Compare the Top Real-Time Analytic Databases as of October 2025

What are Real-Time Analytic Databases?

Real-time analytics databases are database systems that enable businesses to access and analyze data in near real-time. These systems allow companies to make decisions quickly based on up-to-date information, rather than relying on periodic reports from other databases. Real-time analytic databases typically have powerful processors capable of handling complex queries and vast amounts of data. They also support modern features such as distributed computing, automated data management, secure sharing of sensitive information, and elastic scalability. Such advanced capabilities help organizations gain deeper insights into their customers' behavior so they can take appropriate action swiftly. Compare and read user reviews of the best Real-Time Analytic Databases currently available using the table below. This list is updated regularly.

  • 1
    StarTree

    StarTree

    StarTree

    StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.
    Starting Price: Free
  • 2
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • 3
    Apache Pinot

    Apache Pinot

    Apache Corporation

    Pinot is designed to answer OLAP queries with low latency on immutable data. Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index. Joins are currently not supported, but this problem can be overcome by using Trino or PrestoDB for querying. SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data. Consist of of both offline and real-time table. Use real-time table only to cover segments for which offline data may not be available yet. Detect the right anomalies by customizing anomaly detect flow and notification flow.
  • Previous
  • You're on page 1
  • Next