Compare the Top Video Annotation Tools for Linux as of October 2025

What are Video Annotation Tools for Linux?

Video annotation tools are computer-assisted programs designed to help organize and analyze video data. Most tools are designed for use with machine learning, allowing users to create labels, tags, and other forms of metadata that can be used to train AI models. Annotations can also be used to assist with traditional tasks such as tracking the progress of actors within a scene or counting the number of objects in an image. These applications allow for efficient analysis of large amounts of video data without manual effort. Compare and read user reviews of the best Video Annotation tools for Linux currently available using the table below. This list is updated regularly.

  • 1
    Prodigy

    Prodigy

    Explosion

    Radically efficient machine teaching. An annotation tool powered by active learning. Prodigy is a scriptable annotation tool so efficient that data scientists can do the annotation themselves, enabling a new level of rapid iteration. Today’s transfer learning technologies mean you can train production-quality models with very few examples. With Prodigy you can take full advantage of modern machine learning by adopting a more agile approach to data collection. You'll move faster, be more independent and ship far more successful projects. Prodigy brings together state-of-the-art insights from machine learning and user experience. With its continuous active learning system, you're only asked to annotate examples the model does not already know the answer to. The web application is powerful, extensible and follows modern UX principles. The secret is very simple: it's designed to help you focus on one decision at a time and keep you clicking – like Tinder for data.
    Starting Price: $490 one-time fee
  • 2
    Sixgill Sense
    Every step of the machine learning and computer vision workflow is made simple and fast within one no-code platform. Sense allows anyone to build and deploy AI IoT solutions to any cloud, the edge or on-premise. Learn how Sense provides simplicity, consistency and transparency to AI/ML teams with enough power and depth for ML engineers yet easy enough to use for subject matter experts. Sense Data Annotation optimizes the success of your machine learning models with the fastest, easiest way to label video and image data for high-quality training dataset creation. The Sense platform offers one-touch labeling integration for continuous machine learning at the edge for simplified management of all your AI solutions.
  • 3
    Sama

    Sama

    Sama

    We offer the highest quality SLA (>95%), even on the most complex workflows. Our team assists with anything from implementing a robust quality rubric to raising edge cases. As an ethical AI company, we have provided economic opportunities for over 52,000 people from underserved and marginalized communities. ML Assisted annotation created up to 3-4x efficiency improvement for a single class annotation. We quickly adapt to ramp-ups, focus shifts, and edge cases. ISO certified delivery centers, biometric authentication, and user authentication with 2FA ensure a secure work environment. Seamlessly re-prioritize tasks, provide quality feedback, and monitor models in production. We support data of all types. Get more with less. We combine machine learning and humans in the loop to filter data and select images relevant to your use case. Receive sample results based on your initial guidelines. We work with you to identify edge cases and recommend annotation best practices.
  • Previous
  • You're on page 1
  • Next