blob: 97cbcc1960be2ba919b5c104ec7c7a0b4f02604a [file] [log] [blame]
Stephen Canonc9d2b052010-07-04 06:15:44 +00001//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2//
Chandler Carruth7a739a02019-01-19 10:56:40 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Stephen Canonc9d2b052010-07-04 06:15:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// This file implements single-precision soft-float division
10// with the IEEE-754 default rounding (to nearest, ties to even).
11//
12// For simplicity, this implementation currently flushes denormals to zero.
13// It should be a fairly straightforward exercise to implement gradual
14// underflow with correct rounding.
15//
16//===----------------------------------------------------------------------===//
17
18#define SINGLE_PRECISION
19#include "fp_lib.h"
20
Joerg Sonnenbergerbfbb8bb2014-03-01 15:30:50 +000021COMPILER_RT_ABI fp_t
22__divsf3(fp_t a, fp_t b) {
Yi Konge527a512018-12-10 22:52:59 +000023
Stephen Canonc9d2b052010-07-04 06:15:44 +000024 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
25 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
26 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
Yi Konge527a512018-12-10 22:52:59 +000027
Stephen Canonc9d2b052010-07-04 06:15:44 +000028 rep_t aSignificand = toRep(a) & significandMask;
29 rep_t bSignificand = toRep(b) & significandMask;
30 int scale = 0;
Yi Konge527a512018-12-10 22:52:59 +000031
Stephen Canonc9d2b052010-07-04 06:15:44 +000032 // Detect if a or b is zero, denormal, infinity, or NaN.
33 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
Yi Konge527a512018-12-10 22:52:59 +000034
Stephen Canonc9d2b052010-07-04 06:15:44 +000035 const rep_t aAbs = toRep(a) & absMask;
36 const rep_t bAbs = toRep(b) & absMask;
Yi Konge527a512018-12-10 22:52:59 +000037
Stephen Canonc9d2b052010-07-04 06:15:44 +000038 // NaN / anything = qNaN
39 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
40 // anything / NaN = qNaN
41 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
Yi Konge527a512018-12-10 22:52:59 +000042
Stephen Canonc9d2b052010-07-04 06:15:44 +000043 if (aAbs == infRep) {
44 // infinity / infinity = NaN
45 if (bAbs == infRep) return fromRep(qnanRep);
46 // infinity / anything else = +/- infinity
47 else return fromRep(aAbs | quotientSign);
48 }
Yi Konge527a512018-12-10 22:52:59 +000049
Stephen Canonc9d2b052010-07-04 06:15:44 +000050 // anything else / infinity = +/- 0
51 if (bAbs == infRep) return fromRep(quotientSign);
Yi Konge527a512018-12-10 22:52:59 +000052
Stephen Canonc9d2b052010-07-04 06:15:44 +000053 if (!aAbs) {
54 // zero / zero = NaN
55 if (!bAbs) return fromRep(qnanRep);
56 // zero / anything else = +/- zero
57 else return fromRep(quotientSign);
58 }
59 // anything else / zero = +/- infinity
60 if (!bAbs) return fromRep(infRep | quotientSign);
Yi Konge527a512018-12-10 22:52:59 +000061
Stephen Canonc9d2b052010-07-04 06:15:44 +000062 // one or both of a or b is denormal, the other (if applicable) is a
63 // normal number. Renormalize one or both of a and b, and set scale to
64 // include the necessary exponent adjustment.
65 if (aAbs < implicitBit) scale += normalize(&aSignificand);
66 if (bAbs < implicitBit) scale -= normalize(&bSignificand);
67 }
Yi Konge527a512018-12-10 22:52:59 +000068
Stephen Canonc9d2b052010-07-04 06:15:44 +000069 // Or in the implicit significand bit. (If we fell through from the
70 // denormal path it was already set by normalize( ), but setting it twice
71 // won't hurt anything.)
72 aSignificand |= implicitBit;
73 bSignificand |= implicitBit;
74 int quotientExponent = aExponent - bExponent + scale;
Yi Konge527a512018-12-10 22:52:59 +000075
Stephen Canonc9d2b052010-07-04 06:15:44 +000076 // Align the significand of b as a Q31 fixed-point number in the range
77 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
78 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
79 // is accurate to about 3.5 binary digits.
80 uint32_t q31b = bSignificand << 8;
81 uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
Yi Konge527a512018-12-10 22:52:59 +000082
Stephen Canonc9d2b052010-07-04 06:15:44 +000083 // Now refine the reciprocal estimate using a Newton-Raphson iteration:
84 //
85 // x1 = x0 * (2 - x0 * b)
86 //
87 // This doubles the number of correct binary digits in the approximation
88 // with each iteration, so after three iterations, we have about 28 binary
89 // digits of accuracy.
90 uint32_t correction;
91 correction = -((uint64_t)reciprocal * q31b >> 32);
92 reciprocal = (uint64_t)reciprocal * correction >> 31;
93 correction = -((uint64_t)reciprocal * q31b >> 32);
94 reciprocal = (uint64_t)reciprocal * correction >> 31;
95 correction = -((uint64_t)reciprocal * q31b >> 32);
96 reciprocal = (uint64_t)reciprocal * correction >> 31;
Yi Konge527a512018-12-10 22:52:59 +000097
Stephen Canonc9d2b052010-07-04 06:15:44 +000098 // Exhaustive testing shows that the error in reciprocal after three steps
99 // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
100 // expectations. We bump the reciprocal by a tiny value to force the error
101 // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
102 // be specific). This also causes 1/1 to give a sensible approximation
103 // instead of zero (due to overflow).
104 reciprocal -= 2;
Yi Konge527a512018-12-10 22:52:59 +0000105
Stephen Canonc9d2b052010-07-04 06:15:44 +0000106 // The numerical reciprocal is accurate to within 2^-28, lies in the
107 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
108 // than the true reciprocal of b. Multiplying a by this reciprocal thus
109 // gives a numerical q = a/b in Q24 with the following properties:
110 //
111 // 1. q < a/b
112 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
113 // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
114 // from the fact that we truncate the product, and the 2^27 term
115 // is the error in the reciprocal of b scaled by the maximum
116 // possible value of a. As a consequence of this error bound,
Yi Konge527a512018-12-10 22:52:59 +0000117 // either q or nextafter(q) is the correctly rounded
Stephen Canonc9d2b052010-07-04 06:15:44 +0000118 rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
Yi Konge527a512018-12-10 22:52:59 +0000119
Stephen Canonc9d2b052010-07-04 06:15:44 +0000120 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
121 // In either case, we are going to compute a residual of the form
122 //
123 // r = a - q*b
124 //
125 // We know from the construction of q that r satisfies:
126 //
127 // 0 <= r < ulp(q)*b
Yi Konge527a512018-12-10 22:52:59 +0000128 //
Stephen Canonc9d2b052010-07-04 06:15:44 +0000129 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
130 // already have the correct result. The exact halfway case cannot occur.
131 // We also take this time to right shift quotient if it falls in the [1,2)
132 // range and adjust the exponent accordingly.
133 rep_t residual;
134 if (quotient < (implicitBit << 1)) {
135 residual = (aSignificand << 24) - quotient * bSignificand;
136 quotientExponent--;
137 } else {
138 quotient >>= 1;
139 residual = (aSignificand << 23) - quotient * bSignificand;
140 }
141
142 const int writtenExponent = quotientExponent + exponentBias;
Yi Konge527a512018-12-10 22:52:59 +0000143
Stephen Canonc9d2b052010-07-04 06:15:44 +0000144 if (writtenExponent >= maxExponent) {
145 // If we have overflowed the exponent, return infinity.
146 return fromRep(infRep | quotientSign);
147 }
Yi Konge527a512018-12-10 22:52:59 +0000148
Stephen Canonc9d2b052010-07-04 06:15:44 +0000149 else if (writtenExponent < 1) {
150 // Flush denormals to zero. In the future, it would be nice to add
151 // code to round them correctly.
152 return fromRep(quotientSign);
153 }
Yi Konge527a512018-12-10 22:52:59 +0000154
Stephen Canonc9d2b052010-07-04 06:15:44 +0000155 else {
156 const bool round = (residual << 1) > bSignificand;
157 // Clear the implicit bit
158 rep_t absResult = quotient & significandMask;
159 // Insert the exponent
160 absResult |= (rep_t)writtenExponent << significandBits;
161 // Round
162 absResult += round;
163 // Insert the sign and return
164 return fromRep(absResult | quotientSign);
165 }
166}
Saleem Abdulrasool99e2e662017-05-16 16:41:37 +0000167
168#if defined(__ARM_EABI__)
Eli Friedman83774b42017-10-03 21:25:07 +0000169#if defined(COMPILER_RT_ARMHF_TARGET)
Saleem Abdulrasool99e2e662017-05-16 16:41:37 +0000170AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) {
171 return __divsf3(a, b);
172}
Eli Friedman83774b42017-10-03 21:25:07 +0000173#else
174AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3);
Saleem Abdulrasool99e2e662017-05-16 16:41:37 +0000175#endif
Eli Friedman83774b42017-10-03 21:25:07 +0000176#endif