俺はさ、物事を学ぶときに、長い時間をかけることがほぼねーのよな。
Kerasでテキトーな文書分類タスクを学習する場合、3 epochsで十分なのよ、100とか回す必要ねーの。
なぜなら、3回で精度の収束傾向が読めねーなら、そのモデル設計自体がクソなんだよ。
100 epochs回すってのは、もはや「思考停止の自己放尿」だよ。出せば出すほど気持ちいいけど、何も残らねぇ。
ギターもチェスも料理も同じ。俺の学習に「解像度」なんて概念は存在しない。
音楽理論を覚えるより、コード進行の位相構造を感じ取った方が早い。
チェスのオープニングを全部暗記するより、局面のエントロピー変化を直感で捉えた方が強くなる。
レシピを完コピするより、熱伝導と香気分子の拡散を支配した方がうまくなる。
俺はそういう学び方をしてる。つまり、学習とは情報量を増やすことじゃなく、情報を圧縮して抽象構造を見抜くことなんだよ。
だから「楽しめればいい」というのは、俺にとって惰性でも妥協でもない。むしろ、それは人間的な限界処理速度に合わせた最適化戦略なんだ。
楽しめない学習ってのは、CPUがサーマルスロットリングしてんのにベンチマーク回してる自己放尿してるようなもんだ。意味がない。
100 epochs回したのなんて、「仕事でしょうがなくプログラミングをやってるから」程度の自己放尿でさ。要は、精度を上げるんじゃなくて、上司の不安を下げるための儀式だ。
だから俺は3 epochsで世界を読む。100 epochsを信じる奴らは、コードも理論も自分の中で抽象化できないから、量で殴るしかねぇんだ。
はいAI