- 2.25.0 (latest)
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Pipeline(steps: typing.List[typing.Tuple[str, bigframes.ml.base.BaseEstimator]])Pipeline of transforms with a final estimator.
Sequentially apply a list of transforms and a final estimator.
Intermediate steps of the pipeline must be transforms, that is, they
must implement fit and transform methods.
The final estimator only needs to implement fit.
The purpose of the pipeline is to assemble several steps that can be
cross-validated together while setting different parameters. This simplifies code, and allows deploying an estimator
and peprocessing together, e.g. with Pipeline.to_gbq(...).
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values
fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.ml.pipeline.PipelineFit the model.
Fit all the transformers one after the other and transform the data. Finally, fit the transformed data using the final estimator.
| Parameters | |
|---|---|
| Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
A DataFrame or Series representing training data. Must match the input requirements of the first step of the pipeline. |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
A DataFrame or Series representing training targets, if applicable. |
| Returns | |
|---|---|
| Type | Description |
Pipeline |
Pipeline with fitted steps. |
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description |
deep |
bool, default True
Default |
| Returns | |
|---|---|
| Type | Description |
Dictionary |
A dictionary of parameter names mapped to their values. |
predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrameAPI documentation for predict method.
score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrameAPI documentation for score method.
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.pipeline.PipelineSave the pipeline to BigQuery.
| Parameters | |
|---|---|
| Name | Description |
model_name |
str
the name of the model(pipeline). |
replace |
bool, default False
whether to replace if the model(pipeline) already exists. Default to False. |
| Returns | |
|---|---|
| Type | Description |
Pipeline |
saved model(pipeline). |