Skip to content

Arbi - AI orchestration platform with agent management, web automation, voice interface, and secure transactions

Notifications You must be signed in to change notification settings

ActivateLLC/arbi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤖 Arbi - Autonomous Arbitrage Engine

An AI-powered autonomous arbitrage system that finds and analyzes profitable opportunities across multiple platforms, generating revenue 24/7.

🎯 What is Arbi?

Arbi is a production-ready autonomous arbitrage system that uses AI to:

  • 🔍 Find underpriced products across eBay, Amazon, Walmart, Target
  • 🤖 Score opportunities with AI (0-100 point algorithm)
  • 💰 Calculate real profit after fees, shipping, and costs
  • ⚡ Execute trades automatically (with budget controls)
  • 📊 Generate passive income for users
  • 💵 Platform earns 25% commission on profits

Revenue Potential: $15k-40k/month with proper scaling

✨ Key Features

AI-Powered Intelligence

  • Opportunity Analyzer - Scores each opportunity 0-100 points
  • Risk Manager - Enforces budget limits and spending controls
  • Confidence Scoring - Filters low-quality opportunities automatically
  • Multi-Strategy System - eBay arbitrage, retail arbitrage, seasonal deals

Data Sources (3 Scouts)

  1. eBay Scout - Finds items listed below sold price average (FREE)
  2. Web Scraper - Scrapes Target, Walmart, eBay with Playwright (FREE)
  3. Rainforest Scout - Gets Amazon data without Amazon API ($49/mo)

Risk Management

  • Per-opportunity spending limits ($400 default)
  • Daily spending limits ($1,000 default)
  • Monthly budget caps ($10,000 default)
  • Risk tolerance settings (conservative/moderate/aggressive)
  • Real-time spending tracking

Complete REST API

GET  /api/arbitrage/opportunities       - Find current opportunities
GET  /api/arbitrage/opportunities?minProfit=10&minROI=15
GET  /api/arbitrage/health              - System health check
POST /api/arbitrage/execute             - Execute an opportunity
GET  /api/arbitrage/settings            - Get user settings
PUT  /api/arbitrage/settings            - Update budget/risk settings

🚀 Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/ActivateLLC/arbi.git
cd arbi

# Install dependencies
pnpm install

# Build all packages
pnpm build

# Configure environment
cp .env.example .env
# Add your eBay API key: EBAY_APP_ID=your_app_id_here

# Start the API server
cd apps/api
node dist/index.js

Test It

# Check system health
curl http://localhost:3000/api/arbitrage/health

# Find opportunities
curl http://localhost:3000/api/arbitrage/opportunities

# Filter by profit/ROI
curl "http://localhost:3000/api/arbitrage/opportunities?minProfit=20&minROI=15"

📊 Example Output

{
  "totalFound": 15,
  "recommended": 8,
  "opportunities": [
    {
      "opportunity": {
        "title": "Apple AirPods Pro (2nd Gen)",
        "buyPrice": 189.99,
        "sellPrice": 249.99,
        "estimatedProfit": 19.50,
        "roi": 10.26,
        "buySource": "Target Clearance",
        "sellSource": "eBay"
      },
      "analysis": {
        "score": 72,
        "shouldExecute": true,
        "reasons": ["High confidence based on historical data"]
      },
      "riskAssessment": {
        "approved": true,
        "budgetCheck": { "passed": true }
      },
      "recommended": true
    }
  ]
}

🏗️ Project Structure

arbi/
├── apps/
│   ├── api/              # Main API service (Express + TypeScript)
│   └── web/              # Customer-facing React app
├── packages/
│   ├── arbitrage-engine/ # 🎯 CORE: Autonomous arbitrage system
│   │   ├── scouts/       # Data source integrations
│   │   ├── analyzer/     # AI opportunity scoring
│   │   └── risk-manager/ # Budget & risk controls
│   ├── ai-engine/        # OpenAI Agents SDK integration
│   ├── web-automation/   # Playwright browser automation
│   ├── voice-interface/  # Whisper + ElevenLabs
│   ├── transaction/      # Hyperswitch payment processor
│   └── data/             # PostgreSQL + Redis
├── scripts/
│   └── get-ebay-api-key.ts # Automated API key creation
└── docs/
    ├── DEPLOY_NOW.md             # 3 deployment options (2-5 min)
    ├── LAUNCH_CHECKLIST.md       # Complete setup guide
    ├── AMAZON_API_ALTERNATIVES.md # API solutions
    ├── QUICKSTART_EBAY.md        # eBay setup (5 min)
    └── ENHANCEMENT_ROADMAP.md    # Future ML/RL improvements

🌟 Revenue Model

For Users

  • Set budget limits (daily, monthly, per-opportunity)
  • System finds profitable opportunities automatically
  • Execute trades manually or automatically
  • Keep 75% of all profits

For Platform

  • Earn 25% commission on all profits
  • No risk - users provide capital
  • Scales infinitely with user base
  • Recurring revenue from successful trades

Projected Revenue

Scenario Deals/Day Avg Profit User Take Platform Take Monthly Revenue
Conservative 5 $30 $112.50/day $37.50/day $1,125/month
Moderate 15 $45 $506.25/day $168.75/day $5,063/month
Aggressive 30 $60 $1,350/day $450/day $13,500/month

Per user. Scale to 100 users = $112k-1.35M/month platform revenue

🚀 Deployment

Option 1: Railway (Recommended - 2 minutes)

npm i -g @railway/cli
railway login
railway init
railway up
railway variables set EBAY_APP_ID=your_app_id_here

Option 2: Render (Free Forever Tier)

  1. Connect your GitHub repo at render.com
  2. Set build command: pnpm install && pnpm build
  3. Set start command: cd apps/api && node dist/index.js
  4. Add environment variable: EBAY_APP_ID

Option 3: Docker

docker build -t arbi .
docker run -p 3000:3000 -e EBAY_APP_ID=your_key arbi

See DEPLOY_NOW.md for detailed deployment guides

🔧 Configuration

Environment Variables

# Required
EBAY_APP_ID=your_ebay_app_id        # Get at developer.ebay.com/join (FREE)

# Optional (for additional data sources)
RAINFOREST_API_KEY=your_key         # Amazon data API ($49/mo, 1000 free)
OPENAI_API_KEY=your_key             # For voice features

# Server
NODE_ENV=production
PORT=3000

Budget Settings

Configure in code or via API:

{
  dailyLimit: 1000,           // Max spend per day
  perOpportunityMax: 400,     // Max per single trade
  monthlyLimit: 10000,        // Max spend per month
  reserveFund: 1000,          // Emergency reserve
  riskTolerance: 'moderate',  // conservative | moderate | aggressive
  enabledStrategies: [
    'ecommerce_arbitrage',
    'seasonal_arbitrage',
    'clearance_arbitrage'
  ]
}

📚 Documentation

🛠️ Development

# Install dependencies
pnpm install

# Build all packages
pnpm build

# Run specific package
pnpm --filter @arbi/api dev
pnpm --filter @arbi/web dev

# Run tests
pnpm test

# Lint
pnpm lint

# Type check
pnpm type-check

🤝 How It Works

1. Data Collection

  • Scouts scan eBay, retail sites, APIs every 60 seconds
  • Extract product prices, sold prices, demand metrics
  • Cache results to reduce API calls

2. Opportunity Analysis

// AI Scoring Algorithm (0-100 points)
score =
  + profitPotential (0-30 points)  // ROI-based
  + confidence (0-25 points)        // Historical data
  + speedToProfit (0-20 points)     // Time to sell
  + riskLevel (0-15 points)         // Low/medium/high
  + volatility (0-10 points)        // Price stability

3. Risk Assessment

  • Check budget limits (daily, monthly, per-opportunity)
  • Verify spending capacity
  • Calculate risk score
  • Approve or reject opportunity

4. Execution (Manual or Auto)

  • Purchase item from buy source
  • Create listing on sell platform
  • Track inventory and sales
  • Calculate actual profit
  • Update ML models with results

🔐 Security

  • Budget limits enforced at multiple levels
  • Spending tracked in real-time
  • Risk tolerance configurable per user
  • All API calls rate-limited
  • Secure environment variable management
  • No sensitive data in logs

📈 Scaling

Phase 1: Launch (Month 1)

  • Deploy to Railway/Render
  • Enable eBay scout
  • Target 10-20 users
  • Revenue: $5k-10k/month

Phase 2: Growth (Months 2-3)

  • Add web scraper scout
  • Implement auto-execution
  • Scale to 100 users
  • Revenue: $50k-100k/month

Phase 3: Scale (Months 4-6)

  • Add ML price prediction
  • Implement reinforcement learning
  • Add more data sources
  • Scale to 500 users
  • Revenue: $250k-500k/month

💡 Use Cases

  1. Retail Arbitrage - Buy clearance, sell at market price
  2. eBay Flipping - Find underpriced listings, resell
  3. Seasonal Trading - Buy off-season, sell peak season
  4. Brand Arbitrage - Regional price differences
  5. Liquidation - Bulk purchases from liquidation auctions

🎯 Roadmap

  • Core arbitrage engine
  • eBay API integration
  • Web scraping system
  • AI opportunity scoring
  • Risk management
  • REST API
  • Auto-execution system
  • ML price prediction (TensorFlow.js)
  • Reinforcement learning (PyTorch + RLlib)
  • Mobile app
  • Multi-user platform
  • Social features (share opportunities)

See ENHANCEMENT_ROADMAP.md for detailed technical roadmap.

📊 Tech Stack

  • Backend: Node.js, TypeScript, Express
  • Frontend: React, Vite, TailwindCSS
  • Data: PostgreSQL, Redis
  • AI: OpenAI Agents SDK, Custom ML models
  • Automation: Playwright
  • APIs: eBay Finding API, Rainforest API
  • Infrastructure: Docker, Railway, Render

🤖 Why Arbi?

Traditional arbitrage requires:

  • ❌ Manual product research (hours per day)
  • ❌ Constant price monitoring
  • ❌ Spreadsheet profit calculations
  • ❌ Risk of bad deals
  • ❌ Limited scaling

Arbi automates everything:

  • ✅ AI finds opportunities 24/7
  • ✅ Instant price comparisons
  • ✅ Automatic profit calculations
  • ✅ Risk management built-in
  • ✅ Infinite scaling potential

📞 Support

📄 License

MIT License - See LICENSE file


Built with ❤️ by ActivateLLC

Transform market inefficiencies into automated revenue streams.

About

Arbi - AI orchestration platform with agent management, web automation, voice interface, and secure transactions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages