This project is still in progress
- Python 3.12 installed
ollama
installed (Installation Guide)pip
installed (comes with Python).msg
email files available for processing- LangSmith api key
- Huggingface api key
Run the following command in your project's root directory:
python3 -m venv myvenv
or
conda create -n myvenv python=3.12 -y
python -m venv myvenv
or
conda create -n myvenv python=3.12 -y
source myvenv/bin/activate
or
conda activate myvenv
myvenv\Scripts\activate
or
conda activate myvenv
pip install -r requirements.txt
Before running the program, download the required model (or any model you wish to use):
ollama pull llama3.1
# Synchronous model inference (serial execution)
python email_preprocessing_sync.py /path/to/your/data/directory
# Asynchronous model inference
python email_preprocessing_async.py /path/to/your/data/directory
# Distributed model inference using vllm
python email_preprocessing_vllm_unordered.py /path/to/your/data/directory
# Distributed model inference using accelerate with distinct prompts
# (will be transformed into an agent later)
python email_preprocessing_agent /path/to/your/data/directory
# Create a vector database from a deduplicated email list
python create_embeddings.py
# Run Retrieval-Augmented Generation (RAG) on the vector database
python rag_embedDB.py
# Create Neo4j knowledge graph from emails
python create_kg.py
# Run the bot with an agent implementing RAG on the knowledge graph
python bot.py
/path/to/your/data/directory should be replaced with the actual path where your .msg
files are stored.