graph TB
%% Root
ML[Machine Learning]
%% Subgraphs for vertical stacking
subgraph SUP[Supervised Learning]
SL_CLASS[Classification]
SL_REG[Regression]
SL_CLASS --> LC[Linear Classifiers]
SL_CLASS --> NLC[Non-Linear Classifiers]
SL_CLASS --> PC[Probabilistic Classifiers]
SL_CLASS --> IB[Instance-Based]
SL_CLASS --> ENS_CLAS[Ensemble Methods]
LC --> LR[Logistic Regression]
LC --> LDA[Linear Discriminant Analysis]
LC --> QDA[Quadratic Discriminant Analysis]
LC --> PR[Perceptron]
LC --> SVM_L[Linear SVM]
NLC --> SVM_NL[Non-linear SVM RBF / Poly]
NLC --> DT[Decision Tree]
NLC --> RF[Random Forest]
NLC --> GB[Gradient Boosting: XGBoost / LGBM / CatBoost]
NLC --> AB[AdaBoost]
NLC --> ET[Extra Trees]
PC --> NB[Naive Bayes Gaussian / Multinomial / Bernoulli]
PC --> BN[Bayesian Networks]
PC --> HMM[Hidden Markov Model]
PC --> GMM[Gaussian Mixture Model]
IB --> KNN[K-Nearest Neighbor]
IB --> KNC[K-Nearest Centroid]
IB --> LWL[Locally Weighted Learning]
IB --> RN[Radius Neighbors]
ENS_CLAS --> BAG[Bagging]
ENS_CLAS --> BOOST[Boosting]
ENS_CLAS --> VOTE[Voting Classifier]
ENS_CLAS --> STACK[Stacking Classifier]
SL_REG --> LIN_REG[Linear Regression]
SL_REG --> RIDGE[Ridge Regression]
SL_REG --> LASSO[Lasso Regression]
SL_REG --> ELNET[Elastic Net]
SL_REG --> POLY[Polynomial Regression]
SL_REG --> STEPWISE[Stepwise Regression]
SL_REG --> SVR[Support Vector Regression]
SL_REG --> DTR[Decision Tree Regression]
SL_REG --> RFR[Random Forest Regression]
SL_REG --> GBR[Gradient Boosting Regression]
SL_REG --> GPR[Gaussian Process Regression]
SL_REG --> NNR[Neural Network Regression]
SL_REG --> LARS[Least Angle Regression]
SL_REG --> OMP[Orthogonal Matching Pursuit]
end
subgraph UNSUP[Unsupervised Learning]
UL_CLUSTER[Clustering]
UL_DIMRED[Dimensionality Reduction]
UL_ASSOC[Association Rules]
UL_ANOMALY[Anomaly Detection]
UL_CLUSTER --> CENTR[Centroid-Based]
UL_CLUSTER --> HIER[Hierarchical]
UL_CLUSTER --> DENS[Density-Based]
UL_CLUSTER --> DISTR[Distribution-Based]
UL_CLUSTER --> GRAPH[Graph-Based]
CENTR --> KMEANS[K-Means]
CENTR --> KMEDOIDS[K-Medoids]
CENTR --> FCM[Fuzzy C-Means]
CENTR --> MBK[Mini-Batch K-Means]
HIER --> AGGL[Hierarchical Agglomerative]
HIER --> DIV[Divisive Clustering]
HIER --> BIRCH[BIRCH]
DENS --> DBSCAN[DBSCAN]
DENS --> OPTICS[OPTICS]
DENS --> MEANSHIFT[Mean Shift]
DENS --> HDBSCAN[HDBSCAN]
DISTR --> GMMU[GMM Clustering]
DISTR --> EM[Expectation-Maximization]
GRAPH --> SPECTRAL[Spectral Clustering]
GRAPH --> AFFINITY[Affinity Propagation]
UL_DIMRED --> LDM[Linear Methods]
UL_DIMRED --> NLM[Nonlinear Methods]
LDM --> PCA[Principal Component Analysis]
LDM --> FA[Factor Analysis]
LDM --> ICA[Independent Component Analysis]
LDM --> LDA_DR[Linear Discriminant Analysis]
LDM --> NMF[Non-negative Matrix Factorization]
NLM --> TSNE[t-SNE]
NLM --> UMAP[UMAP]
NLM --> ISOMAP[Isomap]
NLM --> LLE[Locally Linear Embedding]
NLM --> MDS[Multidimensional Scaling]
NLM --> KPCA[Kernel PCA]
NLM --> AE_DIM[Autoencoder DR]
UL_ASSOC --> APRIORI[Apriori]
UL_ASSOC --> FPG[FP-Growth]
UL_ASSOC --> ECLAT[Eclat]
UL_ANOMALY --> ISOF[Isolation Forest]
UL_ANOMALY --> OCSVM[One-Class SVM]
UL_ANOMALY --> LOF[Local Outlier Factor]
UL_ANOMALY --> EENV[Elliptic Envelope]
UL_ANOMALY --> DBSCAN_ANOM[DBSCAN Outlier]
UL_ANOMALY --> AE_ANOM[Autoencoder Anomaly]
UL_ANOMALY --> STAT_ANOM[Z-Score / IQR]
end
subgraph SEMI[Semi-Supervised Learning]
LABELPROP[Label Propagation]
LABELSPREAD[Label Spreading]
SELFTRAIN[Self-training]
COTRAIN[Co-training]
MULTIVIEW[Multi-View Learning]
GSSL[Graph-based SSL]
end
subgraph RL[Reinforcement Learning]
RL_VAL[Value-Based RL]
RL_POL[Policy-Based RL]
RL_ACT[Actor-Critic RL]
RL_MB[Model-Based RL]
RL_VAL --> QL[Q-Learning]
RL_VAL --> SARSA[SARSA]
RL_VAL --> EQSARSA[Expected SARSA]
RL_VAL --> DQL[Deep-Q-Learning]
RL_VAL --> DOUBLEQL[Double Q-Learning]
RL_VAL --> NSTEPQL[N-Step Q-Learning]
RL_VAL --> DQN[Deep Q-Network]
RL_VAL --> DDQN[Double DQN]
RL_VAL --> DUELINGDNQ[Dueling DQN]
RL_VAL --> RDQN[Rainbow DQN]
RL_VAL --> QRDQN[Quantile Regression DQN]
RL_POL --> REINF[REINFORCE]
RL_POL --> PPO[PPO]
RL_POL --> TRPO[TRPO]
RL_POL --> NPG[Natural Policy Gradients]
RL_POL --> CEM[Cross-Entropy Method]
RL_ACT --> AC[Actor Critic]
RL_ACT --> A2C[A2C]
RL_ACT --> A3C[A3C]
RL_ACT --> DDPG[DDPG]
RL_ACT --> TD3[TD3]
RL_ACT --> SAC[SAC]
RL_MB --> MCTS[Monte Carlo Tree Search]
RL_MB --> ALPHAMCTS[AlphaZero]
RL_MB --> MUZERO[MuZero]
RL_MB --> DYNAQ[Dyna-Q]
RL_MB --> MPC[Model Predictive Control]
end
subgraph DL[Deep Learning]
FFNN[Feedforward NN]
CNN[Convolutional Networks]
RNN[Recurrent Networks]
TRANS[Transformers]
GEN[Generative Models]
ATTN[Attention Mechanisms]
GNN[Graph NNs]
SPC[Specialized Arch]
FFNN --> MLP[MultiLayer Perceptron]
FFNN --> DNN[Deep Neural Network]
FFNN --> RBFN[Radial Basis Function NN]
CNN --> CONVNET[CNN Gen]
CNN --> LENET[LeNet]
CNN --> ALEXNET[AlexNet]
CNN --> VGGNET[VGG]
CNN --> RESNET[ResNet]
CNN --> DENSENET[DenseNet]
CNN --> INCEPTION[Inception GoogLeNet]
CNN --> EFFICIENT[EfficientNet]
CNN --> MOBILENET[MobileNet]
CNN --> SQUEEZENET[SqueezeNet]
RNN --> VANILLARNN[Vanilla RNN]
RNN --> LSTM[LSTM]
RNN --> GRU[GRU]
RNN --> BIRNN[Bidirectional RNN]
RNN --> ECHO[Echo State NN]
TRANS --> TRANSF[Transformer]
TRANS --> BERT[BERT]
TRANS --> GPT[GPT]
TRANS --> T5[T5]
TRANS --> ROBERTA[RoBERTa]
TRANS --> XLNET[XLNet]
TRANS --> ELECTRA[ELECTRA]
TRANS --> DEBERTA[DeBERTa]
GEN --> GAN[GAN]
GEN --> VAE[VAE]
GEN --> DIFFUSION[Diffusion Models]
GEN --> FLOW[Flow-based Models]
GEN --> AR[Autoregressive Models]
GEN --> EB[Energy-based Models]
ATTN --> SA[Self-Attention]
ATTN --> MHA[Multi-Head Attention]
ATTN --> CA[Cross-Attention]
ATTN --> SPA[Sparse Attention]
ATTN --> LA[Local Attention]
GNN --> GCN[GCN]
GNN --> GAT[GAT]
GNN --> SAGE[GraphSAGE]
GNN --> MPNN[MPNN]
GNN --> CAPSULE[Capsule Networks]
GNN --> NODE[Neural ODEs]
SPC --> CAPSNET[Capsule Network]
SPC --> NODE_SP[Neural ODEs]
end
subgraph ENS[Ensemble Learning]
BAGGING[Bagging]
BOOSTING[Boosting]
STACKING[Stacking]
VOTING[Voting]
BAGGING --> RF_BAG[Random Forest]
BAGGING --> ET_BAG[Extra Trees]
BAGGING --> BOOTSTRAP[Bootstrap Aggregating]
BOOSTING --> ADABOOST[AdaBoost]
BOOSTING --> GBOOST[Gradient Boosting]
BOOSTING --> XGB[XGBoost]
BOOSTING --> LGBM[LightGBM]
BOOSTING --> CATBOOST[CatBoost]
BOOSTING --> HISTGB[HistGradientBoosting]
STACKING --> STGEN[Stacked Generalization]
STACKING --> MLS[Multi-Level Stacking]
STACKING --> BLEND[Blending]
VOTING --> HARDV[Hard Voting]
VOTING --> SOFTV[Soft Voting]
VOTING --> WEIGHTEDV[Weighted Voting]
end
subgraph DOM[Specialized Domains]
CV[Computer Vision]
NLP[Natural Language Processing]
TS[Time Series Analysis]
RECSYS[Recommender Systems]
META[Meta Learning]
FSL[Few-Shot Learning]
CV --> OBJDET[Object Detection]
CV --> SEG[Segmentation]
CV --> FACEREC[Face Recognition]
CV --> OCR[Optical Character Recognition]
CV --> IMGCLASS[Image Classification]
CV --> STYLTRANS[Style Transfer]
CV --> SUPRES[Super Resolution]
OBJDET --> YOLO[YOLO]
OBJDET --> RCNN[R-CNN]
OBJDET --> SSD[SSD]
OBJDET --> RETINANET[RetinaNet]
SEG --> UNET[U-Net]
SEG --> MASKRCNN[Mask R-CNN]
NLP --> NER[NER]
NLP --> POSTAG[POS Tagging]
NLP --> SENT[Sentiment Analysis]
NLP --> TRANSL[Machine Translation]
NLP --> QA[Question Answering]
NLP --> SUMM[Summarization]
NLP --> LM[Language Model]
TS --> ARIMA[ARIMA]
TS --> SARIMA[SARIMA]
TS --> PROPHET[Prophet]
TS --> EXP_SMOOTH[Exponential Smoothing]
TS --> SS[State Space Model]
TS --> LSTM_TS[LSTM Time Series]
TS --> TCN[TCN]
RECSYS --> CF[Collaborative Filtering]
RECSYS --> CBF[Content-based Filtering]
RECSYS --> MF[Matrix Factorization]
RECSYS --> DCF[Deep Collab Filtering]
RECSYS --> NCF[Neural Collaborative Filtering]
RECSYS --> FM[Factorization Machines]
META --> MAML[MAML]
META --> PN[Prototypical NN]
META --> MN[Matching NN]
META --> RN[Relation NN]
META --> MSGD[Meta-SGD]
META --> REP[Reptile]
FSL --> SIAMESE[Siamese Net]
FSL --> TRIPLET[Triplet Net]
FSL --> PN_FSL[Prototypical NN]
FSL --> RN_FSL[Relation NN]
FSL --> MAML_FSL[MAML]
end
subgraph OPT[Optimization Algorithms]
GD[Gradient Descents]
HPO[Hyperparam Opt]
EVO[Evolutionary]
GD --> SGD[SGD]
GD --> MBGD[Mini-batch GD]
GD --> MOM[Momentum]
GD --> NAG[Nesterov]
GD --> ADA[Adagrad]
GD --> RMS[RMSProp]
GD --> ADAM[Adam]
GD --> ADAMW[AdamW]
GD --> NADAM[Nadam]
GD --> AMSGR[AMSGrad]
HPO --> GRID[Grid Search]
HPO --> RANDOM[Random Search]
HPO --> BO[Bayesian Opt]
HPO --> TPE[TPE]
HPO --> HB[Hyperband]
HPO --> BOHB[BOHB]
HPO --> OPTUNA[Optuna]
HPO --> PBT[Pop Based Training]
EVO --> GA[Genetic Alg]
EVO --> GP[Genetic Prog]
EVO --> ES[Evolutionary Strategies]
EVO --> PSO[Particle Swarm]
EVO --> DE[Differential Evolution]
end
%% Connect root to all
ML --> SUP
ML --> UNSUP
ML --> SEMI
ML --> RL
ML --> DL
ML --> ENS
ML --> DOM
ML --> OPT
-
Notifications
You must be signed in to change notification settings - Fork 0
Karanxa/ml-algorithms-
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published