Skip to content

Application des Algorithmes d’IA pour l’Analyse et la Prédiction des Défauts dans les Systèmes de Distribution Electrique

License

Notifications You must be signed in to change notification settings

OussamaTabDev/DistributionElectrique

Repository files navigation

Electrical Distribution Fault Analysis System

status

Project Overview

This project implements a comprehensive system for analyzing and classifying faults in electrical distribution networks using various Machine Learning and Deep Learning approaches. The system includes supervised learning, unsupervised learning, and deep learning models, along with a web interface for real-time fault detection and visualization.

Project Structure

├── classData.csv                    # Main dataset file
├── Deep Learning/                   # Deep Learning implementation
│   ├── Autoencoders/               # Autoencoder models
│   └── Feedforward Neural Network/  # FNN implementations and results
│       └── Fault_Classification_Results/
│           ├── Various model files (.h5)
│           └── Comparison reports and visualizations
├── Machine Learning/
│   ├── Suprivised ML/              # Supervised learning implementations
│   │   └── SML/                    # Visualization and results
│   └── Usuprivsed ML/              # Unsupervised learning implementations
│       └── UML/    
├── Rapport + Presentation + Video  # Clustering and anomaly detection results
└── Website/                        # Web interface implementation

Features

  • Multiple Model Implementations:

    • Supervised Learning Models (Random Forest, SVM, XGBoost, etc.)
    • Unsupervised Learning (K-Means, DBSCAN, GMM)
    • Deep Learning Models (CNN, LSTM, GRU, Autoencoders)
  • Comprehensive Analysis:

    • Fault Classification
    • Anomaly Detection
    • Pattern Recognition
    • Performance Comparisons
  • Visualization:

    • Confusion Matrices
    • Distribution Plots
    • Cluster Visualizations
    • Performance Metrics
  • Web Interface:

    • Real-time Fault Detection
    • Interactive Visualizations
    • Model Performance Monitoring

Models Implemented

Supervised Learning

  • Random Forest
  • Support Vector Machines (Linear, RBF)
  • XGBoost
  • K-Nearest Neighbors
  • Decision Trees
  • Logistic Regression
  • Naive Bayes
  • SGD Classifier

Unsupervised Learning

  • K-Means Clustering
  • DBSCAN
  • Gaussian Mixture Models
  • Agglomerative Clustering

Deep Learning

  • Convolutional Neural Networks (CNN)
  • Long Short-Term Memory (LSTM)
  • Gated Recurrent Units (GRU)
  • Feedforward Neural Networks
  • Autoencoders

Installation

  1. Clone the repository
  2. Install the required packages:
pip install -r requirements.txt

Usage

Running the Web Interface

cd Website
streamlit run app.py

Jupyter Notebooks

The project includes several Jupyter notebooks for different analyses:

  • Deep Learning/Feedforward Neural Network/main.ipynb
  • Machine Learning/Suprivised ML/main.ipynb
  • Machine Learning/Usuprivsed ML/main.ipynb

Results

The project includes comprehensive visualization and comparison of different models:

  • Model comparison plots
  • Confusion matrices
  • Distribution analyses
  • Cluster visualizations
  • Performance metrics

Documentation

Detailed documentation and reports can be found in:

  • Rapport + Presentation + Video/Rapport.pdf
  • Model-specific documentation in respective directories
  • Web interface documentation in Website/README.md

Requirements

See requirements.txt for a complete list of dependencies.

Contributing

This project was developed as part of a final year project (PFE) focusing on electrical distribution fault analysis.

License

MIT License

Contact

For any queries regarding this project, please refer to the documentation or contact the repository maintainer.


Note: This project is completed and was developed as part of a Professional Final Year Project (PFE) focusing on electrical distribution network fault analysis and classification.

About

Application des Algorithmes d’IA pour l’Analyse et la Prédiction des Défauts dans les Systèmes de Distribution Electrique

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •