简体中文🀄 | English🌎
PaddleAPEX is a accuracy and performance expansion pack for PaddlePaddle, supporting operator accuracy checking & operator performance profiling and run-time device memory cost analysis. PaddleAPEX is designed to help developers achieve auto accuracy checking and performance profiling for various devices on paddlepaddle.
Accuracy auto-checker, which can grasp target operators in training models.
Accuracy tool need some configuration before start, you need set target_step, dump_mode. If you set dump_mode=real_data, you need set dump_root_path.(This path can be a local path or a remote path)
Advanced usage: You can set Async_data=True to dump real_data asynchronously. Apex will work better when you set a remote path. For more details, please refer to PaddleAPEX/paddleapex/api_tracer/configs/tool_config.yaml.
If you use default config file, you can modify specific variable in this file, such as target_step, dump_root_path.
Advanced usage:
You can also set your own configuration file by setting environment variable via: export APEX_CONFIG_PATH=your_own_path/tool_config.yaml
# If you are using conda, you can install it by:
cd PaddleAPEX
pip install -e .
# If you are using virtualenv, you can add it to your virtualenv by:
export PYTHONPATH=[abs_path to PaddleAPEX]:$PYTHONPATH
e.g.:
export PYTHONPATH=/root/paddlejob/workspace/xjm/0708/PaddleAPEX:$PYTHONPATH
-
Take demo.py as example.
import paddle from paddleapex import Tracer if __name__ == "__main__": a = paddle.randn([2,2]) b = paddle.randn([2,2]) apex = Tracer() apex.start() y = paddle.add(a,a) y = paddle.add(a,a) apex.stop()
-
Take Llama2-13b traning as example: For more details, please refer to Llama2-13b
-
Run your code, and get a json file:
After running code above, our tool can dump real_data or tensor satistical data asynchronously. Here, we can get dumped json file and tensor(Optional).|-- dump_info |-- rank0_step5 |-- rank0_step20 |-- forward_rank0.json |-- Paddle*add*0.0.pt |-- Paddle*add*0.1.pt |-- Paddle*add*1.0.pt |-- Paddle*add*1.1.pt -
Advanced Usage: If you have specific api which you want to trace(e.g. layer_norm), you can add its api call stack in paddleapex/api_tracer/configs/op_target.yaml like:
target op:
- paddle.add
- paddle.mul
- paddle._C_ops.layer_norm
- paddlenlp.transformers.fusion_ops.xxxPlease note that paddleapex only support paddle apis which contain regular types, not suppport custom object instance.
-
Directly comparision:
cd paddleapex/apex python run_paddle.py -json [json_path] -backend [gpu/npu/cpu] -out[local_path/remote_path] --dtype FP32,FP16,BF16 -mode all -op <op_name> # mode can combine mem, acc, pro arbitary. E.g.:-mode mem,acc or -mode all # -op is optional args, if you want to run specific op.
This script will generate a repository, which contains api fwd/bwd outputs results. The sturcture is as follows:
|-- local_path |-- backend_output |-- backend_output_backward |-- Warning_list.txtUT Runtime errors and warnings will be recorded in Warning_list.txt. After runing this script twice on different backends, you can run comparision tool to get accuracy result:
python acc_direct_cmp.py --benchmark [gpu_dump_repo] --device [npu_dump_repo] -o [result_path]
This script will generate two csv files, which contains accuracy result and details.
-
Multi-end precision comparision.
# We use run_paddle.py to run the same operator on different devices and generate corresponding outputs. python run_paddle.py -json [json_path] -backend [gpu/npu/cpu] -out[local_path/remote_path] --dtype FP32,FP16,BF16 -mode all -op <op_name> python run_paddle.py -json [json_path] -backend [gpu/npu/cpu] -out[local_path/remote_path] --dtype FP32,FP16,BF16 -mode all -op <op_name> # This script will generate a repository, which contains api fwd/bwd outputs results. # Then we need to execute two times directly comparision tool. python acc_direct_cmp.py --benchmark [gpufp32_dump_repo] --device [gpubf16_dump_repo] -o [result_path] python acc_direct_cmp.py --benchmark [gpufp32_dump_repo] --device [npubf16_dump_repo] -o [result_path] python acc_multi_cmp.py --benchmark [gpufp32_gpubf16] --device [gpufp32_npubf16] -o [third_party_cmp_path]We provide a flow chart for Multi-end precision comparision.
-
For cross framework comparision is in WIP, it will coming soon!
1. Test cases running:
```
cd paddleapex/apex
python run_paddle.py -json [json_path] -backend [gpu/npu/cpu] -out[local_path/remote_path] --dtype [dtype] -mode mem,pro
# exec code above on different devices, and generate corresponding outputs.
```
2. Test cases comparision:
```
cd paddleapex/apex
python prof_cmp.py --benchmark [gpu_repo] --device [npu_repo] -o [result_path]
```

