@@ -428,17 +428,20 @@ def _boost(self, iboost, X, y, sample_weight, X_argsorted=None):
428428 If None then boosting has terminated early.
429429 """
430430 if self .algorithm == 'SAMME.R' :
431- return self ._boost_real (iboost , X , y , sample_weight , X_argsorted = X_argsorted )
431+ return self ._boost_real (iboost , X , y , sample_weight ,
432+ X_argsorted = X_argsorted )
432433
433434 else : # elif self.algorithm == "SAMME":
434- return self ._boost_discrete (iboost , X , y , sample_weight , X_argsorted = X_argsorted )
435+ return self ._boost_discrete (iboost , X , y , sample_weight ,
436+ X_argsorted = X_argsorted )
435437
436438 def _boost_real (self , iboost , X , y , sample_weight , X_argsorted = None ):
437439 """Implement a single boost using the SAMME.R real algorithm."""
438440 estimator = self ._make_estimator ()
439441
440442 if X_argsorted is not None :
441- estimator .fit (X , y , sample_weight = sample_weight , X_argsorted = X_argsorted )
443+ estimator .fit (X , y , sample_weight = sample_weight ,
444+ X_argsorted = X_argsorted )
442445 else :
443446 estimator .fit (X , y , sample_weight = sample_weight )
444447
@@ -498,7 +501,8 @@ def _boost_discrete(self, iboost, X, y, sample_weight, X_argsorted=None):
498501 estimator = self ._make_estimator ()
499502
500503 if X_argsorted is not None :
501- estimator .fit (X , y , sample_weight = sample_weight , X_argsorted = X_argsorted )
504+ estimator .fit (X , y , sample_weight = sample_weight ,
505+ X_argsorted = X_argsorted )
502506 else :
503507 estimator .fit (X , y , sample_weight = sample_weight )
504508
0 commit comments