This is a library which deals with the encoding and decoding of PLDM messages. It should be possible to use this library by projects other than OpenBMC, and hence certain constraints apply to it:
- keeping it light weight
- implementation in C
- minimal dynamic memory allocations
- endian-safe
- no OpenBMC specific dependencies
Source files are named according to the PLDM Type, for eg base.[h/c], fru.[h/c], etc.
Given a PLDM command "foo", the library will provide the following API: For the Requester function:
encode_foo_req() - encode a foo request
decode_foo_resp() - decode a response to foo
For the Responder function:
decode_foo_req() - decode a foo request
encode_foo_resp() - encode a response to foo
The library also provides API to pack and unpack PLDM headers.
Need meson
and ninja
. Alternatively, source an OpenBMC ARM/x86 SDK.
meson setup builddir && ninja -C builddir
The simplest way of running the tests is as described by the meson man page:
meson setup builddir && meson test -C builddir
The ABIs (symbols, generally functions) exposed by the library are separated into three categories:
- Stable
- Testing
- Deprecated
Applications depending on libpldm
should aim to only use functions from the
stable category. However, this may not always be possible. What to do when
required functions fall into the deprecated or testing categories is outlined
below.
---
title: libpldm symbol lifecycle
---
stateDiagram-v2
direction LR
[*] --> Testing: Add
Testing --> Testing: Change
Testing --> [*]: Remove
Testing --> Stable: Stabilise
Stable --> Deprecated: Deprecate
Deprecated --> [*]: Remove
The ABI of the library produced by the build is controlled using the abi
meson
option. The following use cases determine how the abi
option should be
specified:
Use Case | Meson Configuration |
---|---|
Production | -Dabi=deprecated,stable |
Maintenance | -Dabi=stable |
Development | -Dabi=deprecated,stable,testing |
Applications and libraries that depend on libpldm
can identify how to migrate
off of deprecated APIs by constraining the library ABI to the stable category.
This will force the compiler identify any call-sites that try to link against
deprecated symbols.
Applications and libraries often require functionality that doesn't yet exist in
libpldm
. The work is thus in two parts:
- Add the required APIs to
libpldm
- Use the new APIs from
libpldm
in the dependent application or library
Adding APIs to a library is a difficult task. Generally, once an API is exposed in the library's ABI, any changes to the API risk breaking applications already making use of it. To make sure we have more than one shot at getting an API right, all new APIs must first be exposed in the testing category. Concretely:
Patches adding new APIs MUST mark them as testing and MUST NOT mark them as stable.
Three macros are provided through config.h
(automatically included for all
translation units) to mark functions as testing, stable or deprecated:
LIBPLDM_ABI_TESTING
LIBPLDM_ABI_STABLE
LIBPLDM_ABI_DEPRECATED
These annotations go immediately before your function signature:
LIBPLDM_ABI_TESTING
pldm_requester_rc_t pldm_transport_send_msg(struct pldm_transport *transport,
pldm_tid_t tid,
const void *pldm_req_msg,
size_t req_msg_len)
{
...
}
As mentioned above, all new functions must first be added in the testing
category (using the LIBPLDM_ABI_TESTING
annotation).
To move a function from the testing category to the stable category, its required that patches demonstrating use of the function in a dependent application or library be linked in the commit message of the stabilisation change. We require this to demonstrate that the implementer has considered its use in context before preventing us from making changes to the API.
Meson is broadly used in the OpenBMC ecosystem, the historical home of
libpldm
. Meson's subprojects are a relatively painless way of managing
dependencies for the purpose of developing complex applications and libraries.
Use of libpldm
as a subproject is both supported and encouraged.
libpldm
's ABI can be controlled from a parent project through meson's
subproject configuration syntax:
$ meson setup ... -Dlibpldm:abi=deprecated,stable,testing ...
This will support OEM or vendor-specific functions and semantic information. Following directory structure has to be used:
libpldm
|---- include/libpldm
| |---- oem/<oem_name>/libpldm
| |----<oem based .h files>
|---- src
| |---- oem/<oem_name>
| |----<oem based .c files>
|---- tests
| |---- oem/<oem_name>
| |----<oem based test files>
<oem_name> - This folder must be created with the name of the OEM/vendor in lower case.
Header files & source files having the oem functionality for the libpldm library should be placed under the respective folder hierarchy as mentioned in the above figure. They must be adhering to the rules mentioned under the libpldm section above.
Once the above is done a meson option has to be created in
libpldm/meson_options.txt
with its mapped compiler flag to enable conditional
compilation.
For consistency would recommend using "oem-<oem_name>".
The libpldm/meson.build
and the corresponding source file(s) will need to
incorporate the logic of adding its mapped compiler flag to allow conditional
compilation of the code.
The pldm requester API's are present in src/requester
folder and they are
intended to provide API's to interact with the desired underlying transport
layer to send/receive pldm messages.
NOTE : In the current state, the requester API's in the repository only works with specific transport mechanism & these are going to change in future & probably aren't appropriate to be writing code against.