Awesome papers related to generative flow matching and its applications in bioinformatics.
Please feel free to create a pull request if you would like to add other awesome papers.
| Method Name | Year | Brief Description | Source Code |
|---|---|---|---|
| Neural Autoregressive Flows (Huang et al., 2018) | 2018 | Foundational model | GitHub |
| Neural (latent) ODE (Chen et al., 2018) | 2018 | Foundational model | GitHub |
| GLOW (Kingma et al., 2018) | 2018 | Foundational generative flows | GitHub |
| FFJORD (Grathwohl et al., 2019) | 2019 | Improves computational efficiency of Neural ODE | GitHub |
| Augmented Neural ODEs (Dupont et al., 2019) | 2019 | Foundational neural ODE | GitHub |
| Residual Flows (Chen et al., 2019) | 2019 | Invertible generative flows | GitHub |
| Graph Normalizing Flows (Liu et al., 2019) | 2019 | Generative geometric flows | GitHub |
| Stochastic Normalizing Flows (Wu et al., 2020) | 2020 | Generative stochastic flows | GitHub |
| Equivariant Normalizing Flows (Garcia Satorras et al., 2021) | 2021 | Generative equivariant flows | GitHub |
| Diffusion Normalizing Flow (Zhang et al., 2021) | 2021 | Generative stochastic flows | GitHub |
| Monte Carlo Flows (Gabrie et al., 2022) | 2022 | Flows for MCMC | GitHub |
| Divergence-free Neural Conservation Laws (Richter et al., 2022) | 2022 | Flows with divergence-free neural networks | GitHub |
| Rectified Flows (Liu et al., 2022) | 2022 | Straight and fast flow trajectories | GitHub |
| Flow Matching for Generative Modeling (Lipman et al., 2022) | 2022 | Generative flows with Gaussian probability paths | GitHub |
| Stochastic Interpolants (InterFlow) (Albergo et al., 2022) | 2022 | Building flows with stochastic interpolants & diffusion | GitHub |
| RIVER (Davtyan et al., 2022) | 2022 | Flow matching for video prediction | GitHub |
| Point Straight Flow (Wu et al., 2022) | 2022 | Generating point clouds with straight and fast flows | GitHub |
| Action Matching (Neklyudov et al., 2023) | 2023 | Generative optimal transport with arbitrary paths | GitHub |
| OT Conditional Flow Matching (Tong et al., 2023) | 2023 | Generative (conditional) continuous flows | GitHub |
| Fast-ODE (Lee et al., 2023) | 2023 | Minimizing trajectory curvature of ODE-based generative models | GitHub |
| Latent Flow Matching (Dao et al., 2023) | 2023 | Flow matching in the latent space | GitHub |
| [SF]²M (Tong et al., 2023) | 2023 | Simulation‑free stochastic dynamics | GitHub |
| Riemannian Flow Matching (Chen et al., 2023) | 2023 | Generative geometric flows | GitHub |
| Equivariant Flow Matching (Klein et al., 2023) | 2023 | Generative equivariant flows | GitHub |
| Wasserstein Lagrangian Flows (Neklyudov et al., 2023) | 2023 | Unified flows and optimal transport | GitHub |
| FM Boosting (Fischer et al., 2023) | 2023 | Boosting latent diffusion models with flow matching | GitHub |
| Motion Flow Matching (Hu et al., 2023) | 2023 | Flow matching for human motion synthesis and editing | GitHub |
| InstaFlow (Liu et al., 2023) | 2023 | Flows for accelerating text-to-image generation | GitHub |
| Multimodal Flow Matching (Campbell et al., 2024) | 2024 | Continuous‑discrete data generation | GitHub |
| Functional Flow Matching (Kerrigan et al., 2024) | 2024 | Flow matching for infinite dimensional spaces | GitHub |
| Dirichlet Flow Matching (Stark et al., 2024) | 2024 | Discrete data generation | GitHub |
| Discrete Flow Matching (Gat et al., 2024) | 2024 | Discrete data generation | GitHub |
| Fisher Flow Matching (Davis et al., 2024) | 2024 | Discrete data generation | GitHub |
| Bellman Optimal Stepsize Straightening (Nguyen et al., 2024) | 2024 | Distilling and fine‑tuning flow matching generative models | GitHub |
| Consistency Flow Matching (Yang et al., 2024) | 2024 | Learning strict flows with self‑consistency in velocity fields | GitHub |
| Metric Flow Matching (Kapusniak et al., 2024) | 2024 | Flows on the data manifold | GitHub |
| Depth FM (Gui et al., 2024) | 2024 | Flow matching for depth estimation | GitHub |
| Probabilistic Forecasting with Interpolants (Chen et al., 2024) | 2024 | Stochastic interpolants for probabilistic forecasting of dynamical systems | GitHub |
| SemFlow (Wang et al., 2024) | 2024 | Flows for semantic segmentation & semantic image synthesis | GitHub |
| Preference Flow Matching (Kim et al., 2024) | 2024 | Flow matching for preference‑based reinforcement learning | GitHub |
| COT-FM (Kerrigan et al., 2024) | 2024 | Conditional optimal transport with simulation‑free flows | GitHub |
| FlowSeq (Hu et al., 2024) | 2024 | Flow matching for conditional text generation | GitHub |
| Statistical Flow Matching (Cheng et al., 2024) | 2024 | Flows on the manifold of parameterized probability measures | GitHub |
| Optimal Flow Matching (Kornilov et al., 2024) | 2024 | Shorter flow trajectories | GitHub |
| Discrete Guidance (Nisonoff et al., 2024) | 2024 | Guidance of discrete state‑space flow and diffusion models | GitHub |
| Meta Flow Matching (Atanackovic et al., 2024) | 2024 | Flows across measures and modeling sample interactions | GitHub |
| Trajectory Flow Matching (Zhang et al., 2024) | 2024 | Simulation‑free modeling of stochastic time‑series | GitHub |
| Generator Matching (Holderrieth et al., 2025) | 2024 | Generalized multi‑modal flow matching | GitHub |
| Wasserstein Flow Matching (Haviv et al., 2024) | 2024 | Flows for families of distributions | GitHub |
| Multi-Marginal Flow Matching (Rohbeck et al., 2025) | 2025 | Flows with smooth spline‑based interpolation | GitHub |
| Contrastive Flow Matching (Stoica et al., 2025) | 2025 | Unique conditional flows | GitHub |
| TFG‑Flow (Lin et al., 2025) | 2025 | Continuous‑discrete flow guidance | GitHub |
| SDE Matching (Bartosh et al., 2025) | 2025 | Simulation‑free latent SDEs | GitHub |
| Research Area | Applications | Method Name | Flow Conditioning | Network Architecture | Source Code |
|---|---|---|---|---|---|
| Molecular modeling | Protein sequence generation | ProtFlow (Kong et al., 2025) | Conditioned | Transformer | - |
| Protein structure generation | FrameFlow (Yim et al., 2023) | Unconditioned | SE(3)-equivariant transformer | GitHub | |
| Protein structure generation | FoldFlow (Bosese & Huguet, 2024) | Unconditioned | SE(3)-equivariant transformer | GitHub | |
| Protein side-chain packing | FlowPacker (Lee et al., 2025) | Conditioned | SE(3)-equivariant transformer | GitHub | |
| Protein sequence & structure generation | Multiflow (Campbell et al., 2024) | Unconditioned | SE(3)-equivariant transformer | GitHub | |
| Protein sequence & structure generation | CoFlow (Yang et al., 2025) | Conditioned | Transformer | GitHub | |
| Protein sequence & structure generation | OriginFlow (Yan et al., 2025) | Unconditioned/Conditioned | Transformer | GitHub | |
| Antibody protein sequence & structure | FlowDesign (Wu et al., 2025) | Conditioned | SE(3)-equivariant transformer | – | |
| Peptide protein sequence & structure | D-Flow (Wu et al., 2024) | Conditioned | Transformer | GitHub | |
| Small molecule generation | MolFM (Song et al., 2023) | Unconditioned | Geometric GNN | GitHub | |
| Small molecule generation | SemlaFlow (Irwin et al., 2024) | Unconditioned | Geometric GNN | GitHub | |
| Small molecule generation | FlowMol (Dunn et al., 2024) | Unconditioned | Geometric GNN | GitHub | |
| Small molecule conformer prediction | ET-Flow (Hassan et al., 2024) | Conditioned | Transformer | GitHub | |
| Small molecule & materials generation | ADiT (Joshi et al., 2025) | Unconditioned | All-atom transformer | GitHub | |
| Small molecule generation | TABASCO (Vonessen et al., 2025) | Unconditioned | Transformer | GitHub | |
| DNA sequence generation | Dirichlet FM (Stark et al., 2024) | Unconditioned | Transformer with FM on simplex | GitHub | |
| DNA sequence generation | Fisher-Flow (Davis et al., 2024) | Unconditioned | Hyperspherical (Fisher-Rao) FM | GitHub | |
| RNA sequence generation | RNACG (Gao et al., 2024) | Conditioned | Multimodal Diffusion Transformer (Dirichlet FM) | – | |
| RNA sequence & structure generation | RNAFlow (Nori et al., 2024) | Conditioned | Geometric GNN | GitHub | |
| Ligand-conditioned RNA seq & structure | RiboFlow (Ma et al., 2025) | Conditioned | SE(3) flow + torsion modeling | – | |
| Protein-conditioned RNA seq & structure | RNA-EFM (Abir et al., 2025) | Conditioned | Energy‑based SE(3) flow + protein contacts | – | |
| RNA structure generation | RNA-FrameFlow (Anand et al., 2024) | Unconditioned | Torsion-based SE(3)-equivariant transformer | GitHub | |
| RNA structure prediction | RNAbpFlow (Qiao et al., 2024) | Conditioned | Base-pair-augmented SE(3)-equivariant transformer | GitHub | |
| Biomolecular interactions | FlowDock (Morehead et al., 2025) | Conditioned | SE(3)-equivariant transformer | GitHub | |
| Biomolecular interactions | NeuralPLexer3 (Qiao et al., 2024) | Conditioned | All-atom transformer | GitHub | |
| Biomolecular interactions | FlexDock (Corso et al., 2025) | Conditioned | SE(3)-equivariant GNN | GitHub | |
| Biomolecular dynamics | AlphaFlow (Jing et al., 2025) | Conditioned | SE(3)-equivariant transformer | GitHub | |
| Biomolecular dynamics | FMRC (Zhang et al., 2024) | Conditioned | Fully-connected neural network | GitHub | |
| Biomolecular dynamics | MDGen (Jing et al., 2024) | Conditioned | Transformer | GitHub | |
| Biomolecular dynamics | OM-TPS (Raja et al., 2025) | Conditioned | Diffusion/flow neural network | GitHub | |
| Single-cell modeling | Cell phenotype modeling | CellFlow (Klein et al., 2025) | Conditioned | Residual neural network | GitHub |
| Phenotype generation | CFGen (Palma et al., 2025) | Compositional (multi-attribute) | Flow matching (discrete likelihoods) | GitHub | |
| Simulation-free flows | CFM (Tong et al., 2024) | Conditioned | Conditional FM (regression) | GitHub | |
| Stochastic bridges | [SF]²M (Tong et al., 2023) | Unconditioned | Score‑FM | GitHub | |
| Stochastic flow alignment | GENOT (Klein et al., 2024) | Unconditioned | Entropic Gromov–Wasserstein flows | GitHub | |
| Population‑conditioned flow modeling | Meta FM (Atanackovic et al., 2024) | Population‑conditioned | FM‑based GNN | GitHub | |
| Distribution‑level modeling | Wassertein FM (Haviv et al., 2024) | Distributional | Bures–Wasserstein FM | GitHub | |
| Manifold‑constrained flows | Metric FM (Kapusniak et al., 2024) | Metric‑conditioned | Geodesic interpolant + flow field | GitHub | |
| Interaction‑aware bridges | CytoBridge (Zhang et al., 2025) | Conditioned (mean‑field) | Unbalanced mean‑field Schrödinger bridge | – | |
| Rotational dynamics | Curly‑FM (Petrović et al., 2025) | Velocity‑conditioned | Schrödinger bridge with drift | – | |
| Growth‑aware flows | VGFM (Wang et al., 2025) | Conditioned (growth + velocity) | Flow + growth field regression | – | |
| Multi‑context flow learning | MMFM (Rohbeck et al., 2025) | Conditioned (time + condition) | Global vector field + spline guidance | GitHub | |
| Multi-cellular modeling | Cell imaging | CellFlux (Zhang et al., 2025) | Conditioned | U‑Net | GitHub |
| Bioimaging | Cryo-EM denoising | CryoFM (Zhou et al., 2025) | Conditioned | Transformer | – |
| Microscopic Image Segmentation | FlowSDF (Bogensperger et al., 2025) | Conditioned | U‑Net | GitHub |