Skip to content

borglab/gtsfm

Repository files navigation

Alt text

Platform Build Status
Ubuntu 20.04.3 Linux CI

Georgia Tech Structure-from-Motion (GTSfM) is an end-to-end SfM pipeline based on GTSAM. GTSfM was designed from the ground-up to natively support parallel computation using Dask.

For more details, please refer to our arXiv preprint.

License

The majority of our code is governed by an MIT license and is suitable for commercial use. However, certain implementations featured in our repo (e.g., SuperPoint, SuperGlue) are governed by a non-commercial license and may not be used commercially.

Installation

GTSfM requires no compilation, as Python wheels are provided for GTSAM.

Initialize Git submodules

This repository includes external repositories as Git submodules, so, unless you cloned with git clone --recursive you need to initialize:

git submodule update --init --recursive

Create a Conda Environment

To run GTSfM, first, we need to create a conda environment with the required dependencies.

Install MiniConda if needed, then:

On Linux, with CUDA support, run:

conda env create -f environment_linux.yml
conda activate gtsfm-v1 # you may need "source activate gtsfm-v1" depending upon your bash and conda set-up

On macOS, there is no CUDA support, so run:

conda env create -f environment_mac.yml
conda activate gtsfm-v1

Install gtsfm as a module

Now, install gtsfm as a module:

pip install -e .

Make sure that you can run python -c "import gtsfm; import gtsam; print('hello world')" in python, and you are good to go!

Try It on Google Colab

For a quick hands-on example, check out this Colab notebook Colab notebook

Usage Guide (Running 3D Reconstruction)

Before running reconstruction, if you intend to use modules with pre-trained weights (e.g., SuperPoint, SuperGlue, or PatchmatchNet), first download the model weights by running:

./download_model_weights.sh

Running SfM

GTSfM provides a unified runner that supports all dataset types through Hydra configuration.

To process a dataset containing only an image directory and EXIF metadata, ensure your dataset follows this structure:

└── {DATASET_NAME}
       ├── images
               ├── image1.jpg
               ├── image2.jpg
               ├── image3.jpg

Then, run the following command:

./run --config_name {CONFIG_NAME} --loader olsson --dataset_dir {DATASET_DIR} --num_workers {NUM_WORKERS}

Loader Options

The runner exposes five portable CLI arguments for dataset selection and universal loader configuration:

  • --loader — which loader to use (e.g., olsson, colmap)
  • --dataset_dir — path to the dataset root
  • --images_dir — optional path to the image directory (defaults depend on loader)
  • --max_resolution — maximum length of the image’s short side (overrides config)
  • --input_worker — optional Dask worker address to pin image I/O (advanced; runner sets this post‑instantiation)

All other loader‑specific settings (anything beyond the five above) must be specified using Hydra overrides on the nested config node loader.*. This is standard Hydra behavior: use dot‑notation keys with = assignments.

To discover all available overrides for a given loader, open its YAML in gtsfm/configs/loader/

Required Image Metadata

Currently, we require EXIF data embedded into your images. Alternatively, you can provide:

  • Ground truth intrinsics in the expected format for an Olsson dataset
  • COLMAP-exported text data

Additional CLI Arguments

  • --run_mvs — enables dense Multi-View Stereo (MVS) reconstruction after the sparse SfM pipeline.
  • --run_gs — enables Gaussian Splatting for dense scene representation.

Many other dask-related arguments are available. Run

./run --help

for more information.

Examples

Example (deep front-end on Olsson, single worker):

./run --dataset_dir tests/data/set1_lund_door \
      --config_name deep_front_end.yaml \
      --loader olsson \
      --num_workers 1 \
      loader.max_resolution=1200

For a dataset with metadata formatted in the COLMAP style:

./run --dataset_dir datasets/gerrard-hall \
      --config_name deep_front_end.yaml \
      --loader colmap \
      --num_workers 5 \
      loader.use_gt_intrinsics=true \
      loader.use_gt_extrinsics=true

You can monitor the distributed computation using the Dask dashboard.
Note: The dashboard will only display activity while tasks are actively running, but comprehensive performance reports can be found in the dask_reports folder.

Comparing GTSFM Output with COLMAP Output

To compare GTSFM output with COLMAP, use the following command:

./run --config_name {CONFIG_NAME} --loader colmap --dataset_dir {DATASET_DIR} --num_workers {NUM_WORKERS} --max_frame_lookahead {MAX_FRAME_LOOKAHEAD}

Visualizing Results with Open3D

To visualize the reconstructed scene using Open3D, run:

python gtsfm/visualization/view_scene.py

Speeding Up Front-End Processing

For users who work with the same dataset repeatedly, GTSFM allows caching front-end results for faster inference.
Refer to the detailed guide:
📄 GTSFM Front-End Cacher README

Running GTSFM on a Multi-Machine Cluster

For users who want to run GTSFM on a cluster of multiple machines, follow the setup instructions here:
📄 CLUSTER.md

Where Are the Results Stored?

  • The output will be saved in --output_root, which defaults to the results folder in the repo root.
  • Poses and 3D tracks are stored in COLMAP format inside the ba_output subdirectory of --output_root.
  • You can visualize these using the COLMAP GUI.

Nerfstudio

We provide a preprocessing script to convert the camera poses estimated by GTSfM to nerfstudio format:

python scripts/prepare_nerfstudio.py --results_path {RESULTS_DIR} --images_dir {IMAGES_DIR}

The results are stored in the nerfstudio_input subdirectory inside {RESULTS_DIR}, which can be used directly with nerfstudio if installed:

ns-train nerfacto --data {RESULTS_DIR}/nerfstudio_input

More Loader Details

The runner supports all loaders through --loader, --dataset_dir, and --images_dir. Any additional, loader‑specific settings are passed as Hydra overrides on the nested node loader.* (this is standard Hydra usage).

General pattern

./run \
  --config_name <config_file> \
  --loader <loader_type> \
  --dataset_dir <path> \
  [--images_dir <path>] \
  [--max_resolution <int>] \
  [--input_worker <address>] \
  loader.<param>=<value> \
  [loader.<param2>=<value2> ...]

Available Loaders

The following loader types are supported:

  • colmap - COLMAP format datasets
  • hilti - Hilti SLAM challenge datasets
  • astrovision - AstroVision space datasets
  • olsson - Olsson format datasets
  • argoverse - Argoverse autonomous driving datasets
  • mobilebrick - MobileBrick datasets
  • one_d_sfm - 1DSFM format datasets
  • tanks_and_temples - Tanks and Temples benchmark datasets
  • yfcc_imb - YFCC Image Matching Benchmark datasets

For the complete list of available arguments for each loader, run:

./run --help

Example: Olsson Loader (images + EXIF)

./run \
  --config_name sift_front_end.yaml \
  --loader olsson \
  --dataset_dir /path/to/olsson_dataset \
  loader.max_resolution=1200

Example: Colmap Loader (COLMAP text export)

./run \
  --config_name sift_front_end.yaml \
  --loader colmap \
  --dataset_dir /path/to/colmap_dataset \
  loader.use_gt_intrinsics=true \
  loader.use_gt_extrinsics=true

Tip: consult gtsfm/configs/loader/<loader_name>.yaml for the full set of fields supported by each loader.

Repository Structure

GTSfM is designed in a modular way. Each module can be swapped out with a new one, as long as it implements the API of the module's abstract base class. The code is organized as follows:

  • gtsfm: source code, organized as:
    • averaging
      • rotation: rotation averaging implementations (Shonan, Chordal, etc)
      • translation: translation averaging implementations (1d-SFM, etc)
    • bundle: bundle adjustment implementations
    • common: basic classes used through GTSFM, such as Keypoints, Image, SfmTrack2d, etc
    • data_association: 3d point triangulation (DLT) w/ or w/o RANSAC, from 2d point-tracks
    • densify
    • frontend: SfM front-end code, including:
      • detector: keypoint detector implementations (DoG, etc)
      • descriptor: feature descriptor implementations (SIFT, SuperPoint etc)
      • matcher: descriptor matching implementations (Superglue, etc)
      • verifier: 2d-correspondence verifier implementations (Degensac, OA-Net, etc)
      • cacher: Cache implementations for different stages of the front-end.
    • loader: image data loaders
    • utils: utility functions such as serialization routines and pose comparisons, etc
  • tests: unit tests on every function and module

Contributing

Contributions are always welcome! Please be aware of our contribution guidelines for this project.

Citing this work

If you use GTSfM, please cite our paper:

@misc{Baid23_distributedDeepSfm,
      title={Distributed Global Structure-from-Motion with a Deep Front-End}, 
      author={Ayush Baid and John Lambert and Travis Driver and Akshay Krishnan and Hayk Stepanyan and Frank Dellaert},
      year={2023},
      eprint={2311.18801},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Citing the open-source Python implementation:

@misc{GTSFM,
    author = {Ayush Baid and Travis Driver and Fan Jiang and Akshay Krishnan and John Lambert
       and Ren Liu and Aditya Singh and Neha Upadhyay and Aishwarya Venkataramanan
       and Sushmita Warrier and Jon Womack and Jing Wu and Xiaolong Wu and Frank Dellaert},
    title = { {GTSFM}: Georgia Tech Structure from Motion},
    howpublished={\url{https://github.com/borglab/gtsfm}},
    year = {2021}
}

Note: authors are listed in alphabetical order (by last name).

About

End-to-end SFM framework based on GTSAM

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 28