Platform | Build Status |
---|---|
Ubuntu 20.04.3 |
Georgia Tech Structure-from-Motion (GTSfM) is an end-to-end SfM pipeline based on GTSAM. GTSfM was designed from the ground-up to natively support parallel computation using Dask.
For more details, please refer to our arXiv preprint.
The majority of our code is governed by an MIT license and is suitable for commercial use. However, certain implementations featured in our repo (e.g., SuperPoint, SuperGlue) are governed by a non-commercial license and may not be used commercially.
GTSfM requires no compilation, as Python wheels are provided for GTSAM.
This repository includes external repositories as Git submodules, so, unless you cloned with git clone --recursive
you need to initialize:
git submodule update --init --recursive
To run GTSfM, first, we need to create a conda environment with the required dependencies.
Install MiniConda if needed, then:
On Linux, with CUDA support, run:
conda env create -f environment_linux.yml
conda activate gtsfm-v1 # you may need "source activate gtsfm-v1" depending upon your bash and conda set-up
On macOS, there is no CUDA support, so run:
conda env create -f environment_mac.yml
conda activate gtsfm-v1
Now, install gtsfm
as a module:
pip install -e .
Make sure that you can run python -c "import gtsfm; import gtsam; print('hello world')"
in python, and you are good to go!
For a quick hands-on example, check out this Colab notebook
Before running reconstruction, if you intend to use modules with pre-trained weights (e.g., SuperPoint, SuperGlue, or PatchmatchNet), first download the model weights by running:
./download_model_weights.sh
GTSfM provides a unified runner that supports all dataset types through Hydra configuration.
To process a dataset containing only an image directory and EXIF metadata, ensure your dataset follows this structure:
└── {DATASET_NAME}
├── images
├── image1.jpg
├── image2.jpg
├── image3.jpg
Then, run the following command:
./run --config_name {CONFIG_NAME} --loader olsson --dataset_dir {DATASET_DIR} --num_workers {NUM_WORKERS}
The runner exposes five portable CLI arguments for dataset selection and universal loader configuration:
--loader
— which loader to use (e.g.,olsson
,colmap
)--dataset_dir
— path to the dataset root--images_dir
— optional path to the image directory (defaults depend on loader)--max_resolution
— maximum length of the image’s short side (overrides config)--input_worker
— optional Dask worker address to pin image I/O (advanced; runner sets this post‑instantiation)
All other loader‑specific settings (anything beyond the five above) must be specified using Hydra overrides on the nested config node loader.*
. This is standard Hydra behavior: use dot‑notation keys with =
assignments.
To discover all available overrides for a given loader, open its YAML in gtsfm/configs/loader/
Currently, we require EXIF data embedded into your images. Alternatively, you can provide:
- Ground truth intrinsics in the expected format for an Olsson dataset
- COLMAP-exported text data
--run_mvs
— enables dense Multi-View Stereo (MVS) reconstruction after the sparse SfM pipeline.--run_gs
— enables Gaussian Splatting for dense scene representation.
Many other dask-related arguments are available. Run
./run --help
for more information.
Example (deep front-end on Olsson, single worker):
./run --dataset_dir tests/data/set1_lund_door \
--config_name deep_front_end.yaml \
--loader olsson \
--num_workers 1 \
loader.max_resolution=1200
For a dataset with metadata formatted in the COLMAP style:
./run --dataset_dir datasets/gerrard-hall \
--config_name deep_front_end.yaml \
--loader colmap \
--num_workers 5 \
loader.use_gt_intrinsics=true \
loader.use_gt_extrinsics=true
You can monitor the distributed computation using the Dask dashboard.
Note: The dashboard will only display activity while tasks are actively running, but comprehensive performance reports can be found in the dask_reports
folder.
To compare GTSFM output with COLMAP, use the following command:
./run --config_name {CONFIG_NAME} --loader colmap --dataset_dir {DATASET_DIR} --num_workers {NUM_WORKERS} --max_frame_lookahead {MAX_FRAME_LOOKAHEAD}
To visualize the reconstructed scene using Open3D, run:
python gtsfm/visualization/view_scene.py
For users who work with the same dataset repeatedly, GTSFM allows caching front-end results for faster inference.
Refer to the detailed guide:
📄 GTSFM Front-End Cacher README
For users who want to run GTSFM on a cluster of multiple machines, follow the setup instructions here:
📄 CLUSTER.md
- The output will be saved in
--output_root
, which defaults to theresults
folder in the repo root. - Poses and 3D tracks are stored in COLMAP format inside the
ba_output
subdirectory of--output_root
. - You can visualize these using the COLMAP GUI.
We provide a preprocessing script to convert the camera poses estimated by GTSfM to nerfstudio format:
python scripts/prepare_nerfstudio.py --results_path {RESULTS_DIR} --images_dir {IMAGES_DIR}
The results are stored in the nerfstudio_input subdirectory inside {RESULTS_DIR}
, which can be used directly with nerfstudio if installed:
ns-train nerfacto --data {RESULTS_DIR}/nerfstudio_input
The runner supports all loaders through --loader
, --dataset_dir
, and --images_dir
. Any additional, loader‑specific settings are passed as Hydra overrides on the nested node loader.*
(this is standard Hydra usage).
General pattern
./run \
--config_name <config_file> \
--loader <loader_type> \
--dataset_dir <path> \
[--images_dir <path>] \
[--max_resolution <int>] \
[--input_worker <address>] \
loader.<param>=<value> \
[loader.<param2>=<value2> ...]
The following loader types are supported:
colmap
- COLMAP format datasetshilti
- Hilti SLAM challenge datasetsastrovision
- AstroVision space datasetsolsson
- Olsson format datasetsargoverse
- Argoverse autonomous driving datasetsmobilebrick
- MobileBrick datasetsone_d_sfm
- 1DSFM format datasetstanks_and_temples
- Tanks and Temples benchmark datasetsyfcc_imb
- YFCC Image Matching Benchmark datasets
For the complete list of available arguments for each loader, run:
./run --help
./run \
--config_name sift_front_end.yaml \
--loader olsson \
--dataset_dir /path/to/olsson_dataset \
loader.max_resolution=1200
./run \
--config_name sift_front_end.yaml \
--loader colmap \
--dataset_dir /path/to/colmap_dataset \
loader.use_gt_intrinsics=true \
loader.use_gt_extrinsics=true
Tip: consult
gtsfm/configs/loader/<loader_name>.yaml
for the full set of fields supported by each loader.
GTSfM is designed in a modular way. Each module can be swapped out with a new one, as long as it implements the API of the module's abstract base class. The code is organized as follows:
gtsfm
: source code, organized as:averaging
bundle
: bundle adjustment implementationscommon
: basic classes used through GTSFM, such asKeypoints
,Image
,SfmTrack2d
, etcdata_association
: 3d point triangulation (DLT) w/ or w/o RANSAC, from 2d point-tracksdensify
frontend
: SfM front-end code, including:detector
: keypoint detector implementations (DoG, etc)descriptor
: feature descriptor implementations (SIFT, SuperPoint etc)matcher
: descriptor matching implementations (Superglue, etc)verifier
: 2d-correspondence verifier implementations (Degensac, OA-Net, etc)cacher
: Cache implementations for different stages of the front-end.
loader
: image data loadersutils
: utility functions such as serialization routines and pose comparisons, etc
tests
: unit tests on every function and module
Contributions are always welcome! Please be aware of our contribution guidelines for this project.
If you use GTSfM, please cite our paper:
@misc{Baid23_distributedDeepSfm,
title={Distributed Global Structure-from-Motion with a Deep Front-End},
author={Ayush Baid and John Lambert and Travis Driver and Akshay Krishnan and Hayk Stepanyan and Frank Dellaert},
year={2023},
eprint={2311.18801},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Citing the open-source Python implementation:
@misc{GTSFM,
author = {Ayush Baid and Travis Driver and Fan Jiang and Akshay Krishnan and John Lambert
and Ren Liu and Aditya Singh and Neha Upadhyay and Aishwarya Venkataramanan
and Sushmita Warrier and Jon Womack and Jing Wu and Xiaolong Wu and Frank Dellaert},
title = { {GTSFM}: Georgia Tech Structure from Motion},
howpublished={\url{https://github.com/borglab/gtsfm}},
year = {2021}
}
Note: authors are listed in alphabetical order (by last name).