Skip to content

happymonkey1/kb-pente-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kb-pente-ai

AlphaZero inspired machine learning applied to the board game Pente.

Spiritual successor to my college thesis' source code.

Dependencies

  • uv
    • curl -LsSf https://astral.sh/uv/install.sh | sh

Developer Setup

  • uv sync

Usage

Run training starting from scratch:

uv run python main.py --model-dir=pente-model-v1.9 --batch-games=64 --batch-size=512 --arena --num-arena-games=35 --temp-threshold=5 --mcts-sim=40 --gpu

Run training starting from a checkpoint:

uv run python main.py --model-dir=pente-model-v1.6 --model=pente-model-v1.5/checkpoint-30_19_361_5_128_1.pth.tar --batch-games=96 --batch-size=1024 --arena --num-arena-games=35 --temp-threshold=9 --mcts-sim=15 --gpu

Run training starting from scratch and force processing of a raw dataset:

uv run python main.py --model-dir=pente-model-v1.5 --batch-games=1 --arena --raw-dataset=data/pente_dataset.txt --processed-dataset=data/pente-dataset-processed.pkl --force-dataset-processing

Start inference and self-play evaluation

uv run python main.py --model-dir=PATH_TO_MODEL_DIR --model=PATH_TO_MODEL --infer --infer-mcts --batch-games=64 --batch-size=512 --arena --num-arena-games=35 --temp-threshold=5 --mcts-sim=40 --gpu

About

[read-only mirror] AlphaZero inspired machine learning applied to the board game Pente.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages