Skip to content

leandroohf/ds_pragmatic_programming

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Science Pragmatic Programming

Snippet codes for common used routines in data science projects.

Binder <= Take while when run for the first time

Automated system

Spark notebook

You need to run inside a docker container that has all packages and spark running

https://hub.docker.com/r/ucsddse230/cse255-dse230

# Install images
docker pull ucsddse230/cse255-dse230

# Run container
docker run --name ds_pragmatic -it -p 8890:8888 -v /media/leandroohf/sdb1/leandro/ds_pragmatic_programming:/home/ucsddse230/ ucsddse230/cse255-dse230 /bin/bash

# Run jupyter inside container
jupyter notebook

# If you need to ssh to container
docker exec -it ds_pragmatic /bin/bash
  1. http://localhost:8890/tree
  2. Copy and paste token to login in the notebook

You do not have to, but in case you want to build the images

mkdir -p builddir
cd builddir

# !?
curl asdfa

docker build -t ucsddse230/cse255-dse230 .

# Run for testing
docker run -it -p 8888:8888 ucsddse230/cse255-dse230 jupyter notebook 

Un compress wetaher data

tar -zxvf data/Weather/NY.tgz -C data/Weather

Deep Learning notebook

https://hub.docker.com/r/ermaker/keras-jupyter https://github.com/ermaker/dockerfile-keras-jupyter

# Install images
docker pull bowen0701/docker-python3-ml-jupyter

# Run container
docker run --name deep_learning -it -p 8888:8888 -p 6006:6006 \
       -v ~/Documents/leandro/castingworkbook:/notebooks  \
       bowen0701/docker-python3-ml-jupyter

# If you need to ssh to container
docker exec -it deep_learning /bin/bash
  1. http://localhost:8888/tree
  2. Copy and paste token to login in the notebook

In case you want to build the image and add packages

  1. Save the Dockerfile in a folder build
# Docker settings: Ubuntu, Python3, pip, general machine learning frameworks, Jupyter Notebook.

FROM ubuntu:16.04

LABEL maintainer="Bowen Li <[email protected]>"

# Pick up some Python3 dependencies.
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        curl \
        libfreetype6-dev \
        libpng12-dev \
        libzmq3-dev \
        pkg-config \
        # python \
        # python-dev \
        # python-pip \
        # python-setuptools \
        python3 \
        python3-dev \
        python3-pip \
        python3-setuptools \
        rsync \
        software-properties-common \
        unzip \
        && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

# Install Python3 general packages.
RUN pip3 install --upgrade pip \
        numpy \
        scipy \
        pandas \
        sklearn \
        ipykernel \
        jupyter \
        notedown \
        matplotlib \
        seaborn \
        Cython \
        Pillow \
        requests \
        awscli \
        && \
    python3 -m ipykernel.kernelspec

# Install machine learning packages.
RUN pip3 --no-cache-dir install --upgrade \
        tensorflow \
        tensorboard==1.12 \
        mxnet \
        http://download.pytorch.org/whl/cpu/torch-0.3.1-cp35-cp35m-linux_x86_64.whl \
        torchvision \
        xgboost \
        pymc3 \
        pystan \
        gensim \
        nltk \
        opencv-python

# Set up our notebook config.
COPY jupyter_notebook_config.py /root/.jupyter/

# Copy sample notebooks.
COPY notebooks /notebooks

# Jupyter has issues with being run directly:
#   https://github.com/ipython/ipython/issues/7062
# We just add a little wrapper script.
COPY run_cmd.sh /

# Jupyter Notebook
EXPOSE 8888
# TensorBoard
EXPOSE 6006

WORKDIR /notebooks

RUN chmod +x /run_cmd.sh

CMD ["/run_cmd.sh"]

About

Common snippet codes for machine learning project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages