Skip to content

Conversation

Comet0322
Copy link
Contributor

Summary

Implement the on-paper form of the RoPE kernel from RoFormer
This implementation does not support optional value input, unlike the HuggingFace RoFormer RoPE implementation.

Details

The code is adapted from Liger Kernel's RoPE implementation.
In the current Liger Kernel's RoPE implementation, the head is divided into left and right parts for computation:

$y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]$
$dy = [dx1, dx2] * [cos, cos] + [-dx2, dx1] * [-sin, -sin]$

Corresponds to the vector-vector multiplication-addition form:

$$\begin{pmatrix} q_0\\\ q_1\\\ q_2\\\ \vdots\\\ q_{d/2-1}\\\ q_{d/2}\\\ q_{d/2+1}\\\ q_{d/2+2}\\\ \vdots\\\ q_{d-1} \end{pmatrix} \otimes \begin{pmatrix} cos\ m\theta_0 \\\ cos\ m\theta_1 \\\ cos\ m\theta_2 \\\ \vdots\\\ cos\ m\theta_{d/2-1} \\\ cos\ m\theta_0 \\\ cos\ m\theta_1 \\\ cos\ m\theta_2 \\\ \vdots\\\ cos\ m\theta_{d/2-1} \end{pmatrix} + \begin{pmatrix} -q_{d/2}\\\ -q_{d/2+1}\\\ -q_{d/2+2}\\\ \vdots\\\ -q_{d-1}\\\ q_0\\\ q_1\\\ q_2\\\ \vdots\\\ q_{d/2-1} \end{pmatrix} \otimes \begin{pmatrix} sin\ m\theta_0 \\\ sin\ m\theta_1 \\\ sin\ m\theta_2 \\\ \vdots\\\ sin\ m\theta_{d/2-1} \\\ sin\ m\theta_0 \\\ sin\ m\theta_1 \\\ sin\ m\theta_2 \\\ \vdots\\\ sin\ m\theta_{d/2-1} \end{pmatrix}$$

To obtain the on-paper form of RoPE, the head is instead divided into even-indexed and odd-indexed parts for computation:
$y_{even} = x_{even} * cos - x_{odd} * sin$
$y_{odd} = x_{odd} * cos + x_{even} * sin$

$dy_{even} = dx_{even} * cos + dx_{odd} * sin$
$dy_{odd} = dx_{odd} * cos - dx_{even} * sin$

Corresponds to the vector-vector multiplication-addition form:

$$\begin{pmatrix} q_0\\\ q_1\\\ q_2\\\ q_3\\\ \vdots\\\ q_{d-2}\\\ q_{d-1} \end{pmatrix} \otimes \begin{pmatrix} cos\ m\theta_0 \\\ cos\ m\theta_0 \\\ cos\ m\theta_1 \\\ cos\ m\theta_1 \\\ \vdots\\\ cos\ m\theta_{d/2-1} \\\ cos\ m\theta_{d/2-1} \end{pmatrix} + \begin{pmatrix} -q_1\\\ q_0\\\ -q_3\\\ q_2\\\ \vdots\\\ -q_{d-1}\\\ q_{d-2} \end{pmatrix} \otimes \begin{pmatrix} sin\ m\theta_0 \\\ sin\ m\theta_0 \\\ sin\ m\theta_1 \\\ sin\ m\theta_1 \\\ \vdots\\\ sin\ m\theta_{d/2-1} \\\ sin\ m\theta_{d/2-1} \end{pmatrix}$$

Testing Done

rope_paper_memory
rope_paper_speed

  • Hardware Type: A100-80G-PCIe
  • run make test to ensure correctness
  • run make checkstyle to ensure code style
  • run make test-convergence to ensure convergence

@Comet0322
Copy link
Contributor Author

I've added a paper-form option to the current Liger Kernel RoPE implementation.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants