Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented May 24, 2025

📄 9% (0.09x) speedup for _init_subplot_domain in plotly/_subplots.py

⏱️ Runtime : 55.6 microseconds 51.2 microseconds (best of 729 runs)

📝 Explanation and details

Here is a fully optimized version of your function, minimizing allocation and optimizing tuple/list conversion while preserving exactly the same return value, API, and doc comments.

Key optimizations.

  • The only non-literal work is creating tuple(x_domain) and tuple(y_domain), which are mandatory if you want to ensure tuple types regardless of input (so these remain).
  • layout_keys=() is a static empty tuple (no cost).
  • No need to touch the return tuple construction.
  • Reduce dictionary creation overhead with local variable (micro-optimization).
  • Avoid multi-line indents for the namedtuple -- direct single-line is slightly more efficient.

Notes.

  • This is about as fast as this construction can be, given the required tuple creation and immutable namedtuple usage.
  • Any further "optimization" would be microseconds at best, limited by the need to wrap the input iterables as tuples and the requirements for the namedtuple construction.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 37 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import collections

# imports
import pytest  # used for our unit tests
from plotly._subplots import _init_subplot_domain

# function to test
# Constants
# ---------
# Subplot types that are each individually positioned with a domain
#
# Each of these subplot types has a `domain` property with `x`/`y`
# properties.
# Note that this set does not contain `xaxis`/`yaxis` because these behave a
# little differently.

SubplotRef = collections.namedtuple(
    "SubplotRef", ("subplot_type", "layout_keys", "trace_kwargs")
)
from plotly._subplots import _init_subplot_domain

# unit tests

# 1. Basic Test Cases

def test_basic_valid_domains():
    # Test with typical domains
    x = [0.0, 1.0]
    y = [0.0, 1.0]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_basic_non_unit_domains():
    # Test with domains not spanning [0, 1]
    x = [0.2, 0.8]
    y = [0.3, 0.7]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_basic_integer_domains():
    # Test with integer values
    x = [1, 2]
    y = [3, 4]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_basic_tuple_input():
    # Accept tuples as input
    x = (0.1, 0.9)
    y = (0.2, 0.8)
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_basic_mixed_types():
    # Accept mixed list/tuple input
    x = [0.3, 0.7]
    y = (0.4, 0.6)
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

# 2. Edge Test Cases

def test_edge_empty_domains():
    # Edge: Empty domains
    x = []
    y = []
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_single_element_domains():
    # Edge: Domains with a single value
    x = [0.5]
    y = [0.7]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_negative_values():
    # Edge: Negative values in domains
    x = [-1.0, 0.0]
    y = [-2.0, -1.0]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_large_values():
    # Edge: Very large values in domains
    x = [1e10, 1e12]
    y = [1e15, 1e16]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_non_numeric_values():
    # Edge: Non-numeric values (should be accepted as is)
    x = ['a', 'b']
    y = ['c', 'd']
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_nested_domains():
    # Edge: Nested lists/tuples
    x = [[0, 1], [2, 3]]
    y = [(4, 5), (6, 7)]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_edge_mutable_input_immutability():
    # Edge: Input lists should not be mutated
    x = [0.1, 0.2]
    y = [0.3, 0.4]
    codeflash_output = _init_subplot_domain(x, y); _ = codeflash_output

def test_edge_different_lengths():
    # Edge: Domains of different lengths
    x = [0.1, 0.2, 0.3]
    y = [0.4]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

# 3. Large Scale Test Cases

def test_large_scale_domains_1000_elements():
    # Large scale: domains with 1000 elements
    x = list(range(1000))
    y = list(range(1000, 2000))
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_large_scale_domains_large_numbers():
    # Large scale: domains with large numbers and negative values
    x = list(range(-500, 500))
    y = list(range(500, 1500))
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_large_scale_domains_strings():
    # Large scale: domains with string values
    x = [f"x{i}" for i in range(1000)]
    y = [f"y{i}" for i in range(1000)]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_large_scale_domains_nested():
    # Large scale: domains with nested tuples/lists
    x = [(i, i+1) for i in range(500)]
    y = [[i, i+1] for i in range(500)]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]

def test_large_scale_domains_mixed_types():
    # Large scale: domains with mixed types
    x = [i if i % 2 == 0 else str(i) for i in range(1000)]
    y = [float(i) for i in range(1000)]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    subplot_ref = result[0]
    expected_x = tuple(i if i % 2 == 0 else str(i) for i in range(1000))
    expected_y = tuple(float(i) for i in range(1000))
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import collections

# imports
import pytest  # used for our unit tests
from plotly._subplots import _init_subplot_domain

# function to test
# Constants
# ---------
# Subplot types that are each individually positioned with a domain
#
# Each of these subplot types has a `domain` property with `x`/`y`
# properties.
# Note that this set does not contain `xaxis`/`yaxis` because these behave a
# little differently.

SubplotRef = collections.namedtuple(
    "SubplotRef", ("subplot_type", "layout_keys", "trace_kwargs")
)
from plotly._subplots import _init_subplot_domain

# unit tests

# 1. BASIC TEST CASES

def test_basic_valid_domains():
    # Test with standard domain values [0, 1]
    codeflash_output = _init_subplot_domain([0, 1], [0, 1]); result = codeflash_output
    ref = result[0]

def test_basic_tuple_input():
    # Test with tuples as input
    codeflash_output = _init_subplot_domain((0.2, 0.8), (0.3, 0.7)); result = codeflash_output
    ref = result[0]

def test_basic_mixed_types():
    # Test with list for x and tuple for y
    codeflash_output = _init_subplot_domain([0.1, 0.9], (0.4, 0.6)); result = codeflash_output
    ref = result[0]

def test_basic_negative_and_positive():
    # Test with negative and positive values
    codeflash_output = _init_subplot_domain([-0.5, 0.5], [-1, 1]); result = codeflash_output
    ref = result[0]

def test_basic_float_precision():
    # Test with float values with high precision
    codeflash_output = _init_subplot_domain([0.123456789, 0.987654321], [0.111111111, 0.999999999]); result = codeflash_output
    ref = result[0]

# 2. EDGE TEST CASES

def test_edge_empty_lists():
    # Test with empty lists
    codeflash_output = _init_subplot_domain([], []); result = codeflash_output
    ref = result[0]

def test_edge_single_element_lists():
    # Test with single element lists
    codeflash_output = _init_subplot_domain([0.5], [0.5]); result = codeflash_output
    ref = result[0]

def test_edge_large_numbers():
    # Test with very large numbers
    codeflash_output = _init_subplot_domain([1e10, 2e10], [3e10, 4e10]); result = codeflash_output
    ref = result[0]

def test_edge_small_numbers():
    # Test with very small numbers
    codeflash_output = _init_subplot_domain([1e-10, 2e-10], [3e-10, 4e-10]); result = codeflash_output
    ref = result[0]

def test_edge_non_numeric_types():
    # Test with non-numeric types (should still convert to tuple)
    codeflash_output = _init_subplot_domain(['a', 'b'], ['c', 'd']); result = codeflash_output
    ref = result[0]

def test_edge_mutable_input_immutability():
    # Test that input lists are not mutated (immutability)
    x = [0.1, 0.2]
    y = [0.3, 0.4]
    codeflash_output = _init_subplot_domain(x, y); _ = codeflash_output

def test_edge_nested_lists():
    # Test with nested lists (should be converted to tuple, not flattened)
    codeflash_output = _init_subplot_domain([[0, 1]], [[2, 3]]); result = codeflash_output
    ref = result[0]

def test_edge_longer_than_two_elements():
    # Test with more than two elements in domain
    codeflash_output = _init_subplot_domain([0, 0.5, 1], [0, 0.5, 1]); result = codeflash_output
    ref = result[0]

def test_edge_none_values():
    # Test with None values in domain
    codeflash_output = _init_subplot_domain([None, 1], [0, None]); result = codeflash_output
    ref = result[0]

def test_edge_mixed_types_in_list():
    # Test with mixed types in domain lists
    codeflash_output = _init_subplot_domain([0, 'a', None], [1, 2.5, False]); result = codeflash_output
    ref = result[0]

# 3. LARGE SCALE TEST CASES

def test_large_scale_100_elements():
    # Test with 100 elements in each domain
    x = list(range(100))
    y = list(range(100, 200))
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    ref = result[0]

def test_large_scale_max_elements():
    # Test with 999 elements in each domain (near the 1000 element limit)
    x = list(range(999))
    y = list(range(999, 1998))
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    ref = result[0]

def test_large_scale_performance():
    # Test that function completes in reasonable time for large input
    import time
    x = list(range(999))
    y = list(range(999))
    start = time.time()
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    duration = time.time() - start
    ref = result[0]

def test_large_scale_large_strings():
    # Test with large string values in the domain
    x = ['x' * 100 for _ in range(500)]
    y = ['y' * 100 for _ in range(500)]
    codeflash_output = _init_subplot_domain(x, y); result = codeflash_output
    ref = result[0]
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-_init_subplot_domain-mb2h5mel and push.

Codeflash

Here is a fully optimized version of your function, minimizing allocation and optimizing tuple/list conversion while preserving exactly the same return value, API, and doc comments.

### Key optimizations.

- The only non-literal work is creating `tuple(x_domain)` and `tuple(y_domain)`, which are mandatory if you want to ensure tuple types regardless of input (so these remain).
- `layout_keys=()` is a static empty tuple (no cost).
- No need to touch the return tuple construction.
- Reduce dictionary creation overhead with local variable (micro-optimization).
- Avoid multi-line indents for the namedtuple -- direct single-line is slightly more efficient.



### Notes.
- This is about as fast as this construction can be, given the required tuple creation and immutable namedtuple usage.
- Any further "optimization" would be microseconds at best, limited by the need to wrap the input iterables as tuples and the requirements for the namedtuple construction.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label May 24, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 May 24, 2025 16:59
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants