Skip to content

purezhanghan/btc_codebase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

btc_codebase

A code base for testing btc trade algorithm


train mode:

Model trained with holding_amount_data and btc price, algorithm selected from LinearRegression, SVR, KNeighborsRegressor

python btc_model.py \
	--grid_search False \
	--read_path './data' \
	--save_path './output' \
	--train \
	--val_size 100 \
	--rolling \ 
	--plot 
"""
parameter:
--val_size 	# number of data get validated
--train 	# determine mode
--rolling 	# slide forward predicting, continually feeding test data to training
--plot 		# plot testing result
"""
# --rooling
# given "btc_price, 持有量100-100, etc.." in data folder
# return best model and store in output folder

return example:

LinearRegression       R-squared: -10.418
best_score: -10.418
SVR                    R-squared: -4.444
best_score: -4.444
KNeighborsRegressor    R-squared: 0.517
best_score: 0.517
trend simultaneous acc: 0.979
save model in paht KNeighborsRegressor

eval mode:

eval model without training, assuming there is model existed in output directory. Prediction will be appened to data/pred.csv.

python btc_model.py \
	--read_path './data' \
	--save_path './output' \
	--t_next
"""
parameter:
--t_next 	# return next time prediction
"""

# given "持有量100-1000-test, etc.." in data folder, test tag must be included in file name
# return T+1/T+N prediction(make sure there is a model get trained before)

T+1 example:
current time: 2019-11-27 07:37:04
next time: 2019-11-27 10:37:04
price prediction: 7771.996548204

Todo:

  • Eval Mode: test trained model, return prediction with given data [2019.12.16]
  • Plotting: draw price and prediction during training
  • More auxiliary data: e.g. mood data
  • Model's Parameter Search: random search, bayesian
  • Advanced Model: RNN coming
  • Data quality checking
  • Use logging to replace print

About

A code base for testing btc trade algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages