Skip to content

rfAbedi/Signals-and-Systems-Image-processing

Repository files navigation

About

  • Q2.ipynb
    • Implemented 2D convolution and 2D max pooling functions using only numpy.
    • Invoked functions on a simple image using the given kernels.
  • Q3.ipynb
    • Transformed images into frequency domain using 2D DFT and 2D FFT.
    • Implemented low-pass and high-pass filters and Applied them to the images.

Functions

def Conv2D(img, filters, stride=1, padding='same'):
    .
    .
    .
    return output_image
Parameters Type Detail
img np.ndarray height * width * channels
filters np.ndarray f * f * number_of_filters
stride Integer 1 by deafult
padding String "same" or "valid"
def MaxPooling2D(img, window=(2, 2), stride=2):
    .
    .
    .
    return output_image
Parameters Type Detail
img np.ndarray height * width * channels
window Tuple (height, width)
stride Integer 2 by deafult

Results

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks