Skip to content

[AISTATS 2025] Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

Notifications You must be signed in to change notification settings

KrishnaswamyLab/GeometryAwareGenerativeAutoencoder

 
 

Repository files navigation

[AISTATS 2025] GAGA 💃🪩

Geometry-Aware Generative Autoencoder for
Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

ArXiv AISTATS Twitter

Citation

If you find this work useful in your research, please consider citing:

@inproceedings{sun2025geometry,
  title={Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds}, 
  author={Sun, Xingzhi and Liao, Danqi and MacDonald, Kincaid and Zhang, Yanlei and Liu, Chen and Huguet, Guillaume and Wolf, Guy and Adelstein, Ian and Rudner, Tim GJ and Krishnaswamy, Smita},
  booktitle={International Conference on Artificial Intelligence and Statistics},
  year={2025},
  organization={PMLR},      
}

Installation

conda create -n dmae -c conda-forge python=3.11.5
conda activate dmae
pip install -r requirements.txt
pip install -e . # install the package in dev mode.

If you also want to use jupyter notebooks, install

conda install -c anaconda ipykernel
python -m ipykernel install --user --name=dmae

Visualizing the geometry-aware encoder

Example with toy swiss roll data (npy format)

cd src
python main.py \
    logger.use_wandb=False \
    data.file_type=npy \
    data.require_phate=False \
    data.datapath=../data/swiss_roll.npy \
    data.phatepath=../data/swiss_roll_phate.npy \
    training.max_epochs=5

Example with BMMC myeloid data (anndata format)

cd src
python main.py \
    logger.use_wandb=False \
    data.file_type=h5ad \
    data.require_phate=False \
    data.datapath=../data/BMMC_myeloid.h5ad

Transporting population for single-cell data

cd notebooks/flow_matching
./train.sh
  • Evaluate the model (the example runs for CITE data in 100 PCA dimension)
cd notebooks/flow_matching
./eval.sh

About

[AISTATS 2025] Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Other 0.1%