Skip to content

Mutex/spinlock/condvar #990

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 10 commits into
base: rust-next
Choose a base branch
from
Draft
Prev Previous commit
Next Next commit
rust: introduce ARef
This is an owned reference to an object that is always ref-counted. This
is meant to be used in wrappers for C types that have their own ref
counting functions, for example, tasks, files, inodes, dentries, etc.

Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Reviewed-by: Gary Guo <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
  • Loading branch information
wedsonaf authored and ojeda committed Apr 20, 2023
commit 39da92dc3f178c97e44cff632b2d6f25c7a9a29f
107 changes: 107 additions & 0 deletions rust/kernel/types.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,10 @@ use crate::init::{self, PinInit};
use alloc::boxed::Box;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::MaybeUninit,
ops::{Deref, DerefMut},
ptr::NonNull,
};

/// Used to transfer ownership to and from foreign (non-Rust) languages.
Expand Down Expand Up @@ -268,6 +270,111 @@ impl<T> Opaque<T> {
}
}

/// Types that are _always_ reference counted.
///
/// It allows such types to define their own custom ref increment and decrement functions.
/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
/// [`ARef<T>`].
///
/// This is usually implemented by wrappers to existing structures on the C side of the code. For
/// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
/// instances of a type.
///
/// # Safety
///
/// Implementers must ensure that increments to the reference count keep the object alive in memory
/// at least until matching decrements are performed.
///
/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
/// alive.)
pub unsafe trait AlwaysRefCounted {
/// Increments the reference count on the object.
fn inc_ref(&self);

/// Decrements the reference count on the object.
///
/// Frees the object when the count reaches zero.
///
/// # Safety
///
/// Callers must ensure that there was a previous matching increment to the reference count,
/// and that the object is no longer used after its reference count is decremented (as it may
/// result in the object being freed), unless the caller owns another increment on the refcount
/// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
/// [`AlwaysRefCounted::dec_ref`] once).
unsafe fn dec_ref(obj: NonNull<Self>);
}

/// An owned reference to an always-reference-counted object.
///
/// The object's reference count is automatically decremented when an instance of [`ARef`] is
/// dropped. It is also automatically incremented when a new instance is created via
/// [`ARef::clone`].
///
/// # Invariants
///
/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
/// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
pub struct ARef<T: AlwaysRefCounted> {
ptr: NonNull<T>,
_p: PhantomData<T>,
}

impl<T: AlwaysRefCounted> ARef<T> {
/// Creates a new instance of [`ARef`].
///
/// It takes over an increment of the reference count on the underlying object.
///
/// # Safety
///
/// Callers must ensure that the reference count was incremented at least once, and that they
/// are properly relinquishing one increment. That is, if there is only one increment, callers
/// must not use the underlying object anymore -- it is only safe to do so via the newly
/// created [`ARef`].
pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
// INVARIANT: The safety requirements guarantee that the new instance now owns the
// increment on the refcount.
Self {
ptr,
_p: PhantomData,
}
}
}

impl<T: AlwaysRefCounted> Clone for ARef<T> {
fn clone(&self) -> Self {
self.inc_ref();
// SAFETY: We just incremented the refcount above.
unsafe { Self::from_raw(self.ptr) }
}
}

impl<T: AlwaysRefCounted> Deref for ARef<T> {
type Target = T;

fn deref(&self) -> &Self::Target {
// SAFETY: The type invariants guarantee that the object is valid.
unsafe { self.ptr.as_ref() }
}
}

impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
fn from(b: &T) -> Self {
b.inc_ref();
// SAFETY: We just incremented the refcount above.
unsafe { Self::from_raw(NonNull::from(b)) }
}
}

impl<T: AlwaysRefCounted> Drop for ARef<T> {
fn drop(&mut self) {
// SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
// decrement.
unsafe { T::dec_ref(self.ptr) };
}
}

/// A sum type that always holds either a value of type `L` or `R`.
pub enum Either<L, R> {
/// Constructs an instance of [`Either`] containing a value of type `L`.
Expand Down