-
Notifications
You must be signed in to change notification settings - Fork 4.3k
Add use curiosity in Hallway example environment #1952
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Fix custom protobuf link in README
@@ -246,6 +246,7 @@ If you would like to contribute environments, please see our | |||
`VisualHallway` scene. | |||
* Reset Parameters: None. | |||
* Benchmark Mean Reward: 0.7 | |||
* To speed up training, you can enable curiosity by adding `use_curiosity: true` in `config/trainer_config.yaml` |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is the intention to have space prior to the asterisk?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yes. It looks all examples have the same list of bullet points (Set-up, Goal,..., Benchmark Mean reward). I want to keep the overall structure, and only add enabling curiosity to achieve the benchmark mean reward faster. So I add this optimization under the benchmark mean reward. Let me know if there is a better place to add a note of enabling curiosity.
* develop-barracuda-0.2.0: (80 commits) Restored compatibility fixes for some Androids Upgraded to Barracuda 0.2.1, fixes issues with discrete action models First stage of ML Agents update to Barracuda 0.2.x Update Learning-Environment-Create-New.md (#1993) Format gym_unity using black [Documentation] Added information for the environments the trainer cannot train with the default configurations (#1995) [Documentation] SetReward method (#1996) [Gym] Added no_graphics argument (#1997) Develop black format fix (#1998) Add exception for external brains and array-ify (#1971) Enable the switching of scene to control mode, load the corresponding scene using environment variable (#1956) Add use curiosity in Hallway example environment (#1952) Python code reformat via [`black`](https://github.com/ambv/black). Features: - Reformat code via black. - Adding circleci configurations. - Add contribution guidelines. Fix custom protobuf link in README Bumping gym_unity version Release 0.8.1 to fix pypi issues Explicitly adding all packages as imports Migration doc fixes Basic Retrain (#1929) Updated the 3dballhard model ... # Conflicts: # UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/3DBallHardLearning.nn # UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/3DBallHardLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/3DBallLearning.bytes.meta # UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/3DBallLearning.nn # UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/3DBallLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/BananaCollectors/TFModels/BananaLearning.nn # UnitySDK/Assets/ML-Agents/Examples/BananaCollectors/TFModels/BananaLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Basic/Brains/BasicLearning.asset # UnitySDK/Assets/ML-Agents/Examples/Basic/TFModels/BasicLearning.bytes.meta # UnitySDK/Assets/ML-Agents/Examples/Basic/TFModels/BasicLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Basic/TFModels/BasicLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Bouncer/TFModels/BouncerLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Bouncer/TFModels/BouncerLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Crawler/TFModels/CrawlerDynamicLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Crawler/TFModels/CrawlerDynamicLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Crawler/TFModels/CrawlerStaticLearning.bytes.meta # UnitySDK/Assets/ML-Agents/Examples/Crawler/TFModels/CrawlerStaticLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Crawler/TFModels/CrawlerStaticLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/GridWorld/Scenes/GridWorld.unity # UnitySDK/Assets/ML-Agents/Examples/GridWorld/TFModels/GridWorldLearning.nn # UnitySDK/Assets/ML-Agents/Examples/GridWorld/TFModels/GridWorldLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Hallway/TFModels/HallwayLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Hallway/TFModels/HallwayLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/PushBlock/TFModels/PushBlockLearning.nn # UnitySDK/Assets/ML-Agents/Examples/PushBlock/TFModels/PushBlockLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Pyramids/TFModels/PyramidsLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Pyramids/TFModels/PyramidsLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Reacher/TFModels/ReacherLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Reacher/TFModels/ReacherLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Soccer/TFModels/GoalieLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Soccer/TFModels/GoalieLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Soccer/TFModels/StrikerLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Soccer/TFModels/StrikerLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Tennis/Brains/TennisLearning.asset # UnitySDK/Assets/ML-Agents/Examples/Tennis/TFModels/TennisLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Tennis/TFModels/TennisLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/Walker/TFModels/WalkerLearning.nn # UnitySDK/Assets/ML-Agents/Examples/Walker/TFModels/WalkerLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/WallJump/TFModels/BigWallJumpLearning.nn # UnitySDK/Assets/ML-Agents/Examples/WallJump/TFModels/BigWallJumpLearning.nn.meta # UnitySDK/Assets/ML-Agents/Examples/WallJump/TFModels/SmallWallJumpLearning.nn # UnitySDK/Assets/ML-Agents/Examples/WallJump/TFModels/SmallWallJumpLearning.nn.meta # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda.md # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Barracuda.dll # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Activation.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/BarracudaReferenceImpl.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Broadcast.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Conv.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/ConvOld.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Dense.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/DenseFP16.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Experimental.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/FastNV.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Generic.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Random.cginc # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/Tensor.cginc # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/Barracuda/Resources/TexConv.compute # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/LICENSE.md.meta # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/ReleaseNotes.md # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/ReleaseNotes.md.meta # UnitySDK/Assets/ML-Agents/Plugins/Barracuda.Core/package.json # UnitySDK/Assets/ML-Agents/Resources/NNModelIcon.png # UnitySDK/Assets/ML-Agents/Resources/NNModelIcon.png.meta # UnitySDK/Assets/ML-Agents/Scripts/Academy.cs # UnitySDK/Assets/ML-Agents/Scripts/InferenceBrain/BarracudaModelParamLoader.cs # UnitySDK/Assets/ML-Agents/Scripts/InferenceBrain/GeneratorImpl.cs # UnitySDK/Assets/ML-Agents/Scripts/LearningBrain.cs # UnitySDK/ProjectSettings/ProjectSettings.asset # docs/Basic-Guide.md # docs/Unity-Inference-Engine.md # docs/Using-TensorFlow-Sharp-in-Unity.md # ml-agents/mlagents/trainers/barracuda.py # ml-agents/mlagents/trainers/policy.py # ml-agents/mlagents/trainers/tensorflow_to_barracuda.py
Hallway example takes a long time to train. To speed up training, we can enable curiosity. This change is to add a suggestion in the doc in case our customers want to speed up the Hallway example training.