Skip to content

Reducing complexity on a number of classes. #2480

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Sep 11, 2019
Prev Previous commit
Next Next commit
(Big) Rename of TensorProxy fields
Changed Name —> name; ValueType —> valueType; Shape —> shape; Data —> data
  • Loading branch information
Marwan Mattar committed Sep 1, 2019
commit a48cb988d99bdd93c757c7c2dcd428bc472fb636
Original file line number Diff line number Diff line change
Expand Up @@ -16,22 +16,22 @@ public void TestEvalP()

var src = new TensorProxy
{
Data = new Tensor(1, 3, new[] {0.1f, 0.2f, 0.7f}),
ValueType = TensorProxy.TensorType.FloatingPoint
data = new Tensor(1, 3, new[] {0.1f, 0.2f, 0.7f}),
valueType = TensorProxy.TensorType.FloatingPoint
};

var dst = new TensorProxy
{
Data = new Tensor(1, 3),
ValueType = TensorProxy.TensorType.FloatingPoint
data = new Tensor(1, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};

DiscreteActionOutputApplier.Eval(src, dst, m);

float[] reference = {2, 2, 1};
for (var i = 0; i < dst.Data.length; i++)
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.Data[i]);
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
Expand All @@ -43,22 +43,22 @@ public void TestEvalLogits()

var src = new TensorProxy
{
Data = new Tensor(1, 3, new[] {Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50}),
ValueType = TensorProxy.TensorType.FloatingPoint
data = new Tensor(1, 3, new[] {Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50}),
valueType = TensorProxy.TensorType.FloatingPoint
};

var dst = new TensorProxy
{
Data = new Tensor(1, 3),
ValueType = TensorProxy.TensorType.FloatingPoint
data = new Tensor(1, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};

DiscreteActionOutputApplier.Eval(src, dst, m);

float[] reference = {2, 2, 2};
for (var i = 0; i < dst.Data.length; i++)
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.Data[i]);
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
Expand All @@ -70,27 +70,27 @@ public void TestEvalBatching()

var src = new TensorProxy
{
Data = new Tensor(2, 3, new []
data = new Tensor(2, 3, new []
{
Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50,
Mathf.Log(0.3f) - 25, Mathf.Log(0.4f) - 25, Mathf.Log(0.3f) - 25

}),
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

var dst = new TensorProxy
{
Data = new Tensor(2, 3),
ValueType = TensorProxy.TensorType.FloatingPoint
data = new Tensor(2, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};

DiscreteActionOutputApplier.Eval(src, dst, m);

float[] reference = {2, 2, 2, 0, 1, 0};
for (var i = 0; i < dst.Data.length; i++)
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.Data[i]);
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
Expand All @@ -102,7 +102,7 @@ public void TestSrcInt()

var src = new TensorProxy
{
ValueType = TensorProxy.TensorType.Integer
valueType = TensorProxy.TensorType.Integer
};

Assert.Throws<NotImplementedException>(() => DiscreteActionOutputApplier.Eval(src, null, m));
Expand All @@ -115,12 +115,12 @@ public void TestDstInt()

var src = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

var dst = new TensorProxy
{
ValueType = TensorProxy.TensorType.Integer
valueType = TensorProxy.TensorType.Integer
};

Assert.Throws<ArgumentException>(() => DiscreteActionOutputApplier.Eval(src, dst, m));
Expand All @@ -133,12 +133,12 @@ public void TestSrcDataNull()

var src = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

var dst = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

Assert.Throws<ArgumentNullException>(() => DiscreteActionOutputApplier.Eval(src, dst, m));
Expand All @@ -151,13 +151,13 @@ public void TestDstDataNull()

var src = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = new Tensor(0,1)
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(0,1)
};

var dst = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

Assert.Throws<ArgumentNullException>(() => DiscreteActionOutputApplier.Eval(src, dst, m));
Expand All @@ -170,14 +170,14 @@ public void TestUnequalBatchSize()

var src = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = new Tensor(1, 1)
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(1, 1)
};

var dst = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = new Tensor(2, 1)
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(2, 1)
};

Assert.Throws<ArgumentException>(() => DiscreteActionOutputApplier.Eval(src, dst, m));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,8 @@ public void ApplyContinuousActionOutput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 3},
Data = new Tensor (2, 3, new float[] {1, 2, 3,
shape = new long[] {2, 3},
data = new Tensor (2, 3, new float[] {1, 2, 3,
4, 5, 6})
};
var agentInfos = GetFakeAgentInfos();
Expand All @@ -73,8 +73,8 @@ public void ApplyDiscreteActionOutput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 5},
Data = new Tensor (2, 5, new[] {0.5f, 22.5f, 0.1f, 5f, 1f,
shape = new long[] {2, 5},
data = new Tensor (2, 5, new[] {0.5f, 22.5f, 0.1f, 5f, 1f,
4f, 5f, 6f, 7f, 8f})
};
var agentInfos = GetFakeAgentInfos();
Expand All @@ -98,8 +98,8 @@ public void ApplyMemoryOutput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 5},
Data = new Tensor (2, 5, new[] {0.5f, 22.5f, 0.1f, 5f, 1f,
shape = new long[] {2, 5},
data = new Tensor (2, 5, new[] {0.5f, 22.5f, 0.1f, 5f, 1f,
4f, 5f, 6f, 7f, 8f})
};
var agentInfos = GetFakeAgentInfos();
Expand All @@ -122,8 +122,8 @@ public void ApplyValueEstimate()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 1},
Data = new Tensor (2, 1, new[]{0.5f, 8f})
shape = new long[] {2, 1},
data = new Tensor (2, 1, new[]{0.5f, 8f})
};
var agentInfos = GetFakeAgentInfos();

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,8 @@ public void GenerateBatchSize()
var batchSize = 4;
var generator = new BatchSizeGenerator(alloc);
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0], batchSize);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0], batchSize);
alloc.Dispose();
}

Expand All @@ -71,8 +71,8 @@ public void GenerateSequenceLength()
var batchSize = 4;
var generator = new SequenceLengthGenerator(alloc);
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0], 1);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0], 1);
alloc.Dispose();
}

Expand All @@ -81,18 +81,18 @@ public void GenerateVectorObservation()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 3}
shape = new long[] {2, 3}
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var alloc = new TensorCachingAllocator();
var generator = new VectorObservationGenerator(alloc);
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0, 0], 1);
Assert.AreEqual(inputTensor.Data[0, 2], 3);
Assert.AreEqual(inputTensor.Data[1, 0], 4);
Assert.AreEqual(inputTensor.Data[1, 2], 6);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 2], 3);
Assert.AreEqual(inputTensor.data[1, 0], 4);
Assert.AreEqual(inputTensor.data[1, 2], 6);
alloc.Dispose();
}

Expand All @@ -101,18 +101,18 @@ public void GenerateRecurrentInput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 5}
shape = new long[] {2, 5}
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var alloc = new TensorCachingAllocator();
var generator = new RecurrentInputGenerator(alloc);
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0, 0], 0);
Assert.AreEqual(inputTensor.Data[0, 4], 0);
Assert.AreEqual(inputTensor.Data[1, 0], 1);
Assert.AreEqual(inputTensor.Data[1, 4], 0);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 0);
Assert.AreEqual(inputTensor.data[0, 4], 0);
Assert.AreEqual(inputTensor.data[1, 0], 1);
Assert.AreEqual(inputTensor.data[1, 4], 0);
alloc.Dispose();
}

Expand All @@ -121,8 +121,8 @@ public void GeneratePreviousActionInput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 2},
ValueType = TensorProxy.TensorType.Integer
shape = new long[] {2, 2},
valueType = TensorProxy.TensorType.Integer

};
var batchSize = 4;
Expand All @@ -131,11 +131,11 @@ public void GeneratePreviousActionInput()
var generator = new PreviousActionInputGenerator(alloc);

generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0, 0], 1);
Assert.AreEqual(inputTensor.Data[0, 1], 2);
Assert.AreEqual(inputTensor.Data[1, 0], 3);
Assert.AreEqual(inputTensor.Data[1, 1], 4);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 1], 2);
Assert.AreEqual(inputTensor.data[1, 0], 3);
Assert.AreEqual(inputTensor.data[1, 1], 4);
alloc.Dispose();
}

Expand All @@ -144,20 +144,20 @@ public void GenerateActionMaskInput()
{
var inputTensor = new TensorProxy()
{
Shape = new long[] {2, 5},
ValueType = TensorProxy.TensorType.FloatingPoint
shape = new long[] {2, 5},
valueType = TensorProxy.TensorType.FloatingPoint

};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var alloc = new TensorCachingAllocator();
var generator = new ActionMaskInputGenerator(alloc);
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data);
Assert.AreEqual(inputTensor.Data[0, 0], 1);
Assert.AreEqual(inputTensor.Data[0, 4], 1);
Assert.AreEqual(inputTensor.Data[1, 0], 0);
Assert.AreEqual(inputTensor.Data[1, 4], 1);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 4], 1);
Assert.AreEqual(inputTensor.data[1, 0], 0);
Assert.AreEqual(inputTensor.data[1, 4], 1);
alloc.Dispose();
}
}
Expand Down
12 changes: 6 additions & 6 deletions UnitySDK/Assets/ML-Agents/Editor/Tests/TensorUtilsTest.cs
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ public void RandomNormalTestTensorInt()
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
ValueType = TensorProxy.TensorType.Integer
valueType = TensorProxy.TensorType.Integer
};

Assert.Throws<NotImplementedException>(
Expand All @@ -27,7 +27,7 @@ public void RandomNormalTestDataNull()
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint
valueType = TensorProxy.TensorType.FloatingPoint
};

Assert.Throws<ArgumentNullException>(
Expand All @@ -40,8 +40,8 @@ public void RandomNormalTestTensor()
var rn = new RandomNormal(1982);
var t = new TensorProxy
{
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = new Tensor(1, 3, 4, 2)
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(1, 3, 4, 2)
};

TensorUtils.FillTensorWithRandomNormal(t, rn);
Expand Down Expand Up @@ -74,9 +74,9 @@ public void RandomNormalTestTensor()
-1.177194f,
};

for (var i = 0; i < t.Data.length; i++)
for (var i = 0; i < t.data.length; i++)
{
Assert.AreEqual(t.Data[i], reference[i], 0.0001);
Assert.AreEqual(t.data[i], reference[i], 0.0001);
}
}
}
Expand Down
Loading