Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 4 additions & 9 deletions autosklearn/evaluation/abstract_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
from autosklearn.pipeline.implementations.util import (
convert_multioutput_multiclass_to_multilabel
)
from autosklearn.metrics import calculate_score, CLASSIFICATION_METRICS, REGRESSION_METRICS
from autosklearn.metrics import calculate_score
from autosklearn.util.logging_ import get_named_client_logger

from ConfigSpace import Configuration
Expand Down Expand Up @@ -264,14 +264,9 @@ def _loss(self, y_true, y_hat, scoring_functions=None):
scoring_functions=scoring_functions)

if hasattr(score, '__len__'):
# TODO: instead of using self.metric, it should use all metrics given by key.
# But now this throws error...
if self.task_type in CLASSIFICATION_TASKS:
err = {key: metric._optimum - score[key] for key, metric in
CLASSIFICATION_METRICS.items() if key in score}
else:
err = {key: metric._optimum - score[key] for key, metric in
REGRESSION_METRICS.items() if key in score}
err = {metric.name: metric._optimum - score[metric.name]
for metric in scoring_functions}
err[self.metric.name] = self.metric._optimum - score[self.metric.name]
else:
err = self.metric._optimum - score

Expand Down
66 changes: 66 additions & 0 deletions examples/40_advanced/example_calc_multiple_metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# -*- encoding: utf-8 -*-
"""
=======
Metrics
=======

In *Auto-sklearn*, model is optimized over a metric, either built-in or
custom metric. Moreover, it is also possible to calculate multiple metrics
per run. The following examples show how to calculate metrics built-in
and self-defined metrics for a classification problem.
"""

import autosklearn.classification
import custom_metrics
import pandas as pd
import sklearn.datasets
import sklearn.metrics
from autosklearn.metrics import balanced_accuracy, precision, recall, f1


def get_metric_result(cv_results):
results = pd.DataFrame.from_dict(cv_results)
results = results[results['status'] == "Success"]
cols = ['rank_test_scores', 'param_classifier:__choice__', 'mean_test_score']
cols.extend([key for key in cv_results.keys() if key.startswith('metric_')])
return results[cols]


if __name__ == "__main__":
############################################################################
# Data Loading
# ============

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)

############################################################################
# Build and fit a classifier
# ==========================

error_rate = autosklearn.metrics.make_scorer(
name='custom_error',
score_func=custom_metrics.error,
optimum=0,
greater_is_better=False,
needs_proba=False,
needs_threshold=False
)
cls = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=120,
per_run_time_limit=30,
scoring_functions=[balanced_accuracy, precision, recall, f1, error_rate]
)
cls.fit(X_train, y_train, X_test, y_test)

###########################################################################
# Get the Score of the final ensemble
# ===================================

predictions = cls.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))

print("#" * 80)
print("Metric results")
print(get_metric_result(cls.cv_results_).to_string(index=False))