Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 2, 2025

📄 6% (0.06x) speedup for ai_track in sentry_sdk/ai/monitoring.py

⏱️ Runtime : 26.0 microseconds 24.5 microseconds (best of 35 runs)

📝 Explanation and details

The optimized code achieves a 6% speedup through several key optimizations:

1. Direct Imports Eliminate Attribute Lookups

  • Changed sentry_sdk.utils.event_from_exception to direct import event_from_exception
  • Changed sentry_sdk.get_client() to direct import get_client()
  • Changed sentry_sdk.capture_event to direct import capture_event

These changes avoid repeated module attribute traversals during function execution, reducing overhead in the hot path.

2. Safe SpanKwargs Copying

  • Added local_span_kwargs = span_kwargs.copy() before each use
  • Prevents mutation of the decorator-level dictionary, which could cause issues in concurrent scenarios or when the same decorator is used multiple times

3. Code Deduplication with Helper Function

  • Extracted _set_span_tags_and_data() helper to consolidate the tag/data extraction logic
  • Eliminates duplicate code between sync and async branches while adding conditional checks (if tags:, if data:) to avoid unnecessary iteration over empty dictionaries

The optimizations are most effective for:

  • High-throughput scenarios (like the large-scale test cases) where attribute lookup overhead compounds
  • Concurrent usage where the same decorator instance is called simultaneously
  • Functions with minimal sentry_tags/sentry_data where the conditional checks in the helper avoid unnecessary loops

The 6% improvement comes primarily from reducing Python's attribute resolution overhead in frequently executed code paths.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 8 Passed
🌀 Generated Regression Tests 26 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
test_ai_monitoring.py::test_ai_track 1.33μs 1.34μs -0.150%⚠️
test_ai_monitoring.py::test_ai_track_with_explicit_op 1.36μs 1.24μs 9.71%✅
test_ai_monitoring.py::test_ai_track_with_tags 1.30μs 1.29μs 1.32%✅
🌀 Generated Regression Tests and Runtime
import asyncio
# function to test
import inspect
from functools import wraps

# imports
import pytest  # used for our unit tests
import sentry_sdk.utils
from sentry_sdk import start_span
from sentry_sdk.ai.monitoring import ai_track
from sentry_sdk.consts import SPANDATA
from sentry_sdk.utils import ContextVar

_ai_pipeline_name = ContextVar("ai_pipeline_name", default=None)
from sentry_sdk.ai.monitoring import ai_track

# unit tests

# --- Basic Test Cases ---

def test_sync_function_basic_return():
    # Test that a simple sync function returns its value unchanged
    @ai_track("basic_sync")
    def foo(x):
        return x + 1


def test_sync_function_with_kwargs():
    # Test that kwargs are passed through correctly
    @ai_track("sync_kwargs")
    def foo(x, y=0):
        return x * y

def test_async_function_with_kwargs():
    # Test that async function receives kwargs
    @ai_track("async_kwargs")
    async def foo(x, y=1):
        return x + y



def test_sync_function_op_override(monkeypatch):
    # Test that op can be overridden via span_kwargs
    op_received = []

    class DummySpan:
        def __enter__(self):
            return self
        def __exit__(self, exc_type, exc_val, exc_tb):
            pass

    def dummy_start_span(name, op, **kwargs):
        op_received.append(op)
        return DummySpan()

    monkeypatch.setattr("sentry_sdk.start_span", dummy_start_span)

    @ai_track("op_override", op="custom.op")
    def foo(x):
        return x * 2

def test_async_function_op_override(monkeypatch):
    # Test that op can be overridden via span_kwargs for async
    op_received = []

    class DummySpan:
        def __enter__(self):
            return self
        def __exit__(self, exc_type, exc_val, exc_tb):
            pass

    def dummy_start_span(name, op, **kwargs):
        op_received.append(op)
        return DummySpan()

    monkeypatch.setattr("sentry_sdk.start_span", dummy_start_span)

    @ai_track("op_override_async", op="custom.async.op")
    async def foo(x):
        return x * 3

# --- Edge Test Cases ---





def test_no_tags_or_data(monkeypatch):
    # Test that sentry_tags and sentry_data default to empty dict and don't crash
    tags_set = {}
    data_set = {}

    class DummySpan:
        def __enter__(self):
            return self
        def __exit__(self, exc_type, exc_val, exc_tb):
            pass
        def set_tag(self, k, v):
            tags_set[k] = v
        def set_data(self, k, v):
            data_set[k] = v

    monkeypatch.setattr("sentry_sdk.start_span", lambda *a, **kw: DummySpan())
    monkeypatch.setattr("sentry_sdk.consts.SPANDATA", type("SPANDATA", (), {"GEN_AI_PIPELINE_NAME": "pipeline_name"}))

    @ai_track("no_tags_data")
    def foo(x):
        return x * 2






#------------------------------------------------
import inspect
from functools import wraps

# imports
import pytest  # used for our unit tests
# function to test
import sentry_sdk.utils
from sentry_sdk import start_span
from sentry_sdk.ai.monitoring import ai_track
from sentry_sdk.consts import SPANDATA
from sentry_sdk.utils import ContextVar

_ai_pipeline_name = ContextVar("ai_pipeline_name", default=None)
from sentry_sdk.ai.monitoring import ai_track

# unit tests

# Basic Test Cases

def test_sync_basic_return_value():
    # Test that a simple sync function returns its value unchanged
    @ai_track("basic")
    def foo(x):
        return x + 1

@pytest.mark.asyncio
async def test_async_basic_return_value():
    # Test that a simple async function returns its value unchanged
    @ai_track("basic_async")
    async def foo(x):
        return x * 2

def test_sync_kwargs_tags_and_data():
    # Test sentry_tags and sentry_data are accepted as kwargs
    tags = {"tag1": "val1", "tag2": "val2"}
    data = {"data1": 123, "data2": 456}
    @ai_track("tagsdata")
    def bar(x, sentry_tags=None, sentry_data=None):
        # Should ignore sentry_tags/sentry_data in function logic
        return x

@pytest.mark.asyncio
async def test_async_kwargs_tags_and_data():
    # Test sentry_tags and sentry_data are accepted as kwargs in async
    tags = {"tagA": "valA"}
    data = {"dataA": 789}
    @ai_track("tagsdata_async")
    async def bar(x, sentry_tags=None, sentry_data=None):
        return x

def test_sync_custom_op():
    # Test passing a custom op argument
    @ai_track("customop", op="custom.operation")
    def foo():
        return "ok"

@pytest.mark.asyncio
async def test_async_custom_op():
    # Test passing a custom op argument in async
    @ai_track("customop_async", op="custom.operation.async")
    async def foo():
        return "ok"

# Edge Test Cases

def test_sync_nested_decorator_pipeline_name():
    # Test nested ai_track decorators set GEN_AI_PIPELINE_NAME correctly
    @ai_track("outer")
    def outer(x):
        @ai_track("inner")
        def inner(y):
            return y + 1
        return inner(x)

@pytest.mark.asyncio
async def test_async_nested_decorator_pipeline_name():
    # Test nested ai_track decorators set GEN_AI_PIPELINE_NAME correctly in async
    @ai_track("outer_async")
    async def outer(x):
        @ai_track("inner_async")
        async def inner(y):
            return y * 2
        return await inner(x)



def test_sync_tags_and_data_are_optional():
    # Test that sentry_tags and sentry_data are optional and can be omitted
    @ai_track("optional_args")
    def foo(x):
        return x

@pytest.mark.asyncio
async def test_async_tags_and_data_are_optional():
    # Test that sentry_tags and sentry_data are optional and can be omitted in async
    @ai_track("optional_args_async")
    async def foo(x):
        return x

def test_sync_tags_and_data_empty_dict():
    # Test that passing empty dicts for sentry_tags and sentry_data works
    @ai_track("emptydicts")
    def foo(x, sentry_tags=None, sentry_data=None):
        return x

@pytest.mark.asyncio
async def test_async_tags_and_data_empty_dict():
    # Test that passing empty dicts for sentry_tags and sentry_data works in async
    @ai_track("emptydicts_async")
    async def foo(x, sentry_tags=None, sentry_data=None):
        return x

def test_sync_multiple_calls_pipeline_context():
    # Test multiple calls do not leak pipeline context
    @ai_track("pipetest")
    def foo(x):
        return x

@pytest.mark.asyncio
async def test_async_multiple_calls_pipeline_context():
    # Test multiple calls do not leak pipeline context in async
    @ai_track("pipetest_async")
    async def foo(x):
        return x

def test_sync_args_and_kwargs():
    # Test passing both args and kwargs to the decorated function
    @ai_track("args_kwargs")
    def foo(a, b=2):
        return a + b

@pytest.mark.asyncio
async def test_async_args_and_kwargs():
    # Test passing both args and kwargs to the decorated async function
    @ai_track("args_kwargs_async")
    async def foo(a, b=4):
        return a * b

# Large Scale Test Cases

def test_sync_large_scale_many_calls():
    # Test the decorator on many calls to check performance and no leaks
    @ai_track("large_scale")
    def foo(x):
        return x * x
    for i in range(1000):
        pass

@pytest.mark.asyncio
async def test_async_large_scale_many_calls():
    # Test the decorator on many async calls to check performance and no leaks
    @ai_track("large_scale_async")
    async def foo(x):
        return x + x
    for i in range(1000):
        pass



def test_sync_large_scale_tags_data():
    # Test passing large sentry_tags and sentry_data dicts
    tags = {f"tag{i}": f"val{i}" for i in range(500)}
    data = {f"data{i}": i for i in range(500)}
    @ai_track("large_tags_data")
    def foo(x, sentry_tags=None, sentry_data=None):
        return x

@pytest.mark.asyncio
async def test_async_large_scale_tags_data():
    # Test passing large sentry_tags and sentry_data dicts in async
    tags = {f"tag{i}": f"val{i}" for i in range(500)}
    data = {f"data{i}": i for i in range(500)}
    @ai_track("large_tags_data_async")
    async def foo(x, sentry_tags=None, sentry_data=None):
        return x
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-ai_track-mg9gunxv and push.

Codeflash

The optimized code achieves a 6% speedup through several key optimizations:

**1. Direct Imports Eliminate Attribute Lookups**
- Changed `sentry_sdk.utils.event_from_exception` to direct import `event_from_exception`
- Changed `sentry_sdk.get_client()` to direct import `get_client()`
- Changed `sentry_sdk.capture_event` to direct import `capture_event`

These changes avoid repeated module attribute traversals during function execution, reducing overhead in the hot path.

**2. Safe SpanKwargs Copying**
- Added `local_span_kwargs = span_kwargs.copy()` before each use
- Prevents mutation of the decorator-level dictionary, which could cause issues in concurrent scenarios or when the same decorator is used multiple times

**3. Code Deduplication with Helper Function**
- Extracted `_set_span_tags_and_data()` helper to consolidate the tag/data extraction logic
- Eliminates duplicate code between sync and async branches while adding conditional checks (`if tags:`, `if data:`) to avoid unnecessary iteration over empty dictionaries

The optimizations are most effective for:
- **High-throughput scenarios** (like the large-scale test cases) where attribute lookup overhead compounds
- **Concurrent usage** where the same decorator instance is called simultaneously
- **Functions with minimal sentry_tags/sentry_data** where the conditional checks in the helper avoid unnecessary loops

The 6% improvement comes primarily from reducing Python's attribute resolution overhead in frequently executed code paths.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 2, 2025 13:43
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 2, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant