Below are the key tables summarizing the datasets we used and the link‑prediction results obtained with various methods, followed by detailed information about our software setup, installation steps, datasets, and how to reproduce our experiments.
| Type | Dataset | # Nodes | # Edges | # Features | # Classes |
|---|---|---|---|---|---|
| Homophilous | Cora | 2,708 | 10,556 | 1,433 | 7 |
| Homophilous | CiteSeer | 3,327 | 9,104 | 3,703 | 6 |
| Homophilous | PubMed | 19,717 | 88,648 | 500 | 3 |
| Homophilous | FB Page-Page | 22,470 | 171,002 | 31 | 4 |
| Homophilous | Coauthor-Physics | 34,493 | 495,924 | 8,415 | 5 |
| Homophilous | 4,039 | 88,234 | 1,283 | 193 | |
| Homophilous | DBLP | 17,716 | 105,734 | 1,639 | 4 |
| Heterophilous | Roman-Empire | 22,662 | 32,927 | 300 | 18 |
| Heterophilous | Amazon-Ratings | 24,492 | 93,050 | 300 | 5 |
| Heterophilous | Questions | 48,921 | 153,540 | 301 | 2 |
| Heterophilous | Chameleon | 2,277 | 36,101 | 2,325 | 5 |
| Heterophilous | Actor | 7,600 | 33,544 | 931 | 5 |
| Heterophilous | Crocodile | 1,118 | 15,620 | 1,438 | 3 |
| Method | Cora (HR@100) | Citeseer (HR@100) | Pubmed (HR@100) | FB Page‑Page (MRR) | Facebook (HR@100) | Coauthor‑Physics (MRR) | DBLP (HR@10) |
|---|---|---|---|---|---|---|---|
| CN | 33.92 | 29.79 | 23.13 | 17.85 | 84.38 | 18.57 | 32.8 |
| AA | 39.85 | 35.19 | 27.38 | 22.60 | 88.14 | 22.31 | 21.13 |
| RA | 41.07 | 33.56 | 27.03 | 20.54 | 92.58 | 21.46 | 22.47 |
| GCN | 66.79±1.65 | 67.08±2.94 | 53.02±1.39 | 11.26±1.6 | 92.85±0.61 | 14.68±3.40 | 33.30±4.74 |
| SAGE | 55.02±4.03 | 57.01±3.57 | 44.29±1.44 | 10.44±2.48 | 68.50±8.6 | 13.07±1.02 | 31.06±5.98 |
| GAE | 89.01±1.32 | 91.78±0.94 | 78.81±1.64 | 12.93±0.66 | 92.68±2.58 | 15.83±1.67 | 41.38±3.72 |
| Neo‑GNN | 80.42±1.34 | 84.67±1.42 | 73.93±1.19 | 12.43±0.22 | 91.24±0.77 | 20.94±3.94 | 50.05±3.40 |
| BUDDY | 88.00±0.44 | 92.93±0.27 | 74.10±0.78 | 16.94±1.37 | 87.56±1.43 | 14.26±1.82 | 31.74±6.09 |
| NCN | 89.05±0.96 | 91.56±1.43 | 79.05±1.16 | 9.16±1.96 | 93.67±0.82 | 29.05±3.48 | 51.26±3.26 |
| NCNC | 89.65±1.36 | 93.47±0.95 | 81.29±0.85 | 14.03±7.88 | 92.78±2.00 | 20.99±5.09 | 42.82±4.12 |
| NCN + Class label | 95.71±1.10 | 96.96±0.37 | 90.81±1.13 | 11.27±4.62 | 93.69±0.62 | 27.04±3.93 | 51.75±2.55 |
| CGLE(NCN) (True CL) | 95.77±0.62 | 97.27±0.74 | 90.49±0.54 | 12.06±5.57 | 93.75±0.79 | 26.97±4.32 | 51.33±2.00 |
| NCNC + Class label | 88.63±1.72 | 92.46±1.05 | 82.02±1.51 | 12.72±8.41 | 92.95±0.62 | 21.48±6.47 | 42.54±4.28 |
| CGLE(NCNC) (True CL) | 91.41±1.36 | 92.31±0.14 | 82.06±0.13 | 23.84±6.15 | 93.92±0.56 | 21.24±3.06 | 49.00±3.10 |
| CGLE(NCN)‑kmeans | 94.27±0.94 | 95.89±1.84 | 90.44±0.83 | 7.84±1.28 | 93.99±0.59 | 27.29±3.47 | 52.86±1.48 |
| CGLE(NCNC)‑kmeans | 94.80±0.96 | 96.90±1.12 | 91.65±0.60 | 16.32±5.70 | 93.61±0.90 | 24.94±4.42 | 48.88±3.21 |
| Method | Roman Empire (MRR) | Amazon‑ratings (MRR) | Questions (HR@100) | Chameleon (MRR) | Actor (HR@100) |
|---|---|---|---|---|---|
| NCN | 54.29±0.86 | 55.90±7.51 | 62.25±1.75 | 76.79±1.33 | 53.18±1.65 |
| NCNC | 28.23±12.51 | 72.63±6.69 | 62.93±1.73 | 74.75±8.37 | 50.77±3.07 |
| NCN + Class | 52.32±1.96 | 59.88±8.72 | 63.89±1.40 | 77.09±2.92 | 51.01±2.35 |
| NCNC + Class | 32.35±11.88 | 67.56±3.17 | 63.89±1.40 | 73.68±7.78 | 51.48±1.19 |
| CGLE(NCN) (True CL) | 54.01±0.71 | 64.68±8.25 | 63.02±1.55 | 81.15±3.09 | 53.37±1.71 |
| CGLE(NCNC) (True CL) | 52.23±2.31 | 70.62±5.96 | 63.44±1.57 | 77.88±8.29 | 51.07±4.31 |
| CGLE‑kmeans(NCN) | 53.19±1.44 | 64.03±6.87 | 61.33±2.98 | 77.32±4.19 | 54.82±1.57 |
| CGLE‑kmeans(NCNC) | 53.82±2.57 | 73.67±5.11 | 63.95±2.82 | 77.87±5.45 | 51.42±3.87 |
| Metric | Dataset | NCNC | k=2 | k=5 | k=10 | k=15 | k=20 |
|---|---|---|---|---|---|---|---|
| HR@100 | Cora | 89.65±1.36 | 94.80±0.96 | 94.54±0.78 | 94.58±0.95 | 94.39±1.36 | 94.31±1.35 |
| HR@100 | Citeseer | 93.47±0.95 | 96.55±1.65 | 96.66±1.52 | 96.22±2.49 | 96.30±2.44 | 96.90±1.12 |
| HR@100 | Pubmed | 81.29±0.85 | 91.52±0.37 | 91.30±0.70 | 91.36±0.62 | 91.23±0.26 | 91.65±0.60 |
| HR@100 | 92.78±2.00 | 93.61±0.90 | 93.36±1.74 | 93.44±1.15 | 93.38±1.78 | 93.54±1.43 | |
| MRR | FB Page‑Page | 14.03±7.88 | 12.97±4.48 | 16.32±5.70 | 11.58±3.51 | 13.07±2.65 | 15.32±5.22 |
| MRR | Coauthor‑Physics | 20.99±5.09 | 23.81±2.31 | 24.94±4.42 | 24.28±2.51 | 23.67±3.26 | 22.47±1.43 |
| HR@10 | DBLP | 42.82±4.12 | 48.88±3.21 | 49.14±2.99 | 49.08±4.50 | 48.11±3.99 | 46.96±5.56 |
| MRR | Roman Empire | 28.23±12.51 | 52.93±1.95 | 53.82±2.57 | 53.50±2.19 | 53.25±2.48 | 53.35±1.74 |
| MRR | Amazon‑ratings | 72.73±6.69 | 73.67±5.11 | 69.96±6.86 | 72.74±4.56 | 69.23±8.47 | 68.50±7.54 |
| MRR | Chameleon | 74.75±8.37 | 77.61±11.03 | 77.11±6.37 | 77.28±7.44 | 77.87±5.45 | 75.97±8.60 |
| HR@100 | Questions | 62.93±1.73 | 63.00±2.43 | 63.21±2.79 | 63.59±2.40 | 63.15±2.53 | 63.95±2.82 |
| HR@100 | Actor | 50.77±3.07 | 51.15±3.65 | 51.42±3.87 | 51.39±3.39 | 51.72±2.62 | 51.09±3.69 |
| Metric | Dataset | NCN | k=2 | k=5 | k=10 | k=15 | k=20 |
|---|---|---|---|---|---|---|---|
| HR@100 | Cora | 89.05±0.96 | 94.18±1.00 | 94.23±0.92 | 94.21±0.94 | 94.27±0.94 | 94.16±0.90 |
| HR@100 | Citeseer | 91.56±1.43 | 95.45±2.71 | 95.80±2.22 | 95.56±2.22 | 95.67±2.79 | 95.89±1.84 |
| HR@100 | Pubmed | 79.05±1.16 | 90.04±0.78 | 90.39±0.81 | 90.38±0.86 | 90.44±0.83 | 90.38±0.82 |
| HR@100 | 93.67±0.82 | 93.59±0.77 | 93.85±0.50 | 93.74±0.67 | 93.99±0.59 | 93.55±0.63 | |
| MRR | FB Page‑Page | 9.16±1.96 | 7.60±2.03 | 7.37±1.84 | 7.26±1.24 | 7.76±1.21 | 7.84±1.28 |
| MRR | Coauthor‑Physics | 29.05±3.48 | 26.08±3.19 | 24.91±3.45 | 26.89±2.68 | 27.29±3.47 | 26.48±0.32 |
| HR@10 | DBLP | 51.26±3.26 | 51.53±2.17 | 52.86±1.48 | 50.99±2.84 | 51.49±2.10 | 51.11±2.30 |
| MRR | Roman Empire | 54.29±0.86 | 53.19±1.44 | 52.46±1.85 | 52.25±1.81 | 52.54±1.74 | 52.98±2.25 |
| MRR | Amazon‑ratings | 55.90±7.51 | 61.55±5.46 | 60.93±4.35 | 61.92±6.52 | 60.38±7.23 | 64.03±6.87 |
| MRR | Chameleon | 76.79±1.33 | 76.55±3.53 | 75.24±7.43 | 75.47±5.23 | 77.32±4.19 | 75.63±6.22 |
| HR@100 | Questions | 62.25±1.75 | 60.57±3.42 | 61.33±2.98 | 61.83±1.03 | 59.70±3.39 | 60.88±2.46 |
| HR@100 | Actor | 53.18±1.65 | 54.82±1.57 | 54.56±2.48 | 54.64±1.85 | 54.32±1.91 | 54.72±1.72 |
- Python: 3.10.14
- PyTorch: 2.3.1 (CUDA 12.1)
- PyTorch Geometric: 2.5.3
- OGB: 1.3.6
Hardware: Experiments were conducted using NVIDIA A100 (80GB) and NVIDIA V100 GPUs.
- Install PyTorch.
- Install PyTorch Geometric.
- Install OGB.
-
Facebook Page-Page Network: We used the dataset from Facebook Large Page-Page Network. Since not all features have the maximum dimension of 31, we concatenated them with zeros to make all node feature dimensions consistent at 31. The dataset can be found in the
CGLE/datasets/fb_pagedirectory. -
Other Datasets: We used datasets from PyTorch Geometric.
Clone the repository and navigate to the project directory:
git clone <repository_url>-
To reproduce NCNC:
bash ncnc_run.sh
-
To reproduce NCN:
bash ncn_run.sh
-
To reproduce NCNC ⊕ Class labels:
bash ncnc_concat_y.sh
-
To reproduce NCN ⊕ Class labels:
bash ncn_concat_y.sh
-
To reproduce CGLE(NCNC):
bash cgle_ncnc.sh
-
To reproduce CGLE(NCN):
bash cgle_ncn.sh
-
To reproduce CGLE(NCNC) with k-means:
bash cgle_ncnc_k-means.sh
-
To reproduce CGLE(NCN) with k-means:
bash cgle_ncn_k-means.sh
This implementation was inspired by the following repositories: