Skip to content

One name for MulticlassClassification #2919

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Mar 13, 2019
Prev Previous commit
Next Next commit
merge fix
  • Loading branch information
artidoro committed Mar 13, 2019
commit 4c68ac5335d7baa84902e2f6726c47f4e0f6f9d5
8 changes: 4 additions & 4 deletions test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
Original file line number Diff line number Diff line change
Expand Up @@ -53,10 +53,10 @@ Trainers.FieldAwareFactorizationMachineBinaryClassifier Train a field-aware fact
Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Trainers.FastTree.Gam TrainBinary Microsoft.ML.Trainers.FastTree.GamBinaryClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Trainers.GeneralizedAdditiveModelRegressor Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Trainers.FastTree.Gam TrainRegression Microsoft.ML.Trainers.FastTree.GamRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
Trainers.KMeansPlusPlusClusterer K-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers. Microsoft.ML.Trainers.KMeansTrainer TrainKMeans Microsoft.ML.Trainers.KMeansTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+ClusteringOutput
Trainers.LightGbmBinaryClassifier Train a LightGBM binary classification model. Microsoft.ML.LightGBM.LightGbm TrainBinary Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.LightGBM.LightGbm TrainMulticlass Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
Trainers.LightGbmRanker Train a LightGBM ranking model. Microsoft.ML.LightGBM.LightGbm TrainRanking Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+RankingOutput
Trainers.LightGbmRegressor LightGBM Regression Microsoft.ML.LightGBM.LightGbm TrainRegression Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
Trainers.LightGbmBinaryClassifier Train a LightGBM binary classification model. Microsoft.ML.Trainers.LightGbm.LightGbm TrainBinary Microsoft.ML.Trainers.LightGbm.Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.Trainers.LightGbm.LightGbm TrainMulticlass Microsoft.ML.Trainers.LightGbm.Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
Trainers.LightGbmRanker Train a LightGBM ranking model. Microsoft.ML.Trainers.LightGbm.LightGbm TrainRanking Microsoft.ML.Trainers.LightGbm.Options Microsoft.ML.EntryPoints.CommonOutputs+RankingOutput
Trainers.LightGbmRegressor LightGBM Regression Microsoft.ML.Trainers.LightGbm.LightGbm TrainRegression Microsoft.ML.Trainers.LightGbm.Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
Trainers.LinearSvmBinaryClassifier Train a linear SVM. Microsoft.ML.Trainers.LinearSvmTrainer TrainLinearSvm Microsoft.ML.Trainers.LinearSvmTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegressionBinaryClassificationTrainer TrainBinary Microsoft.ML.Trainers.LogisticRegressionBinaryClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Trainers.LogisticRegressionClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegressionBinaryClassificationTrainer TrainMulticlass Microsoft.ML.Trainers.LogisticRegressionMulticlassClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
Expand Down
You are viewing a condensed version of this merge commit. You can view the full changes here.