Skip to content

Reformatting MulticlassClassification samples to width 85 #3942

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 45 commits into from
Jul 3, 2019
Merged
Changes from 1 commit
Commits
Show all changes
45 commits
Select commit Hold shift + click to select a range
539a0f7
reformatted multiclassclassification samples
sierralee51 Jul 1, 2019
d18c419
fixing errors
sierralee51 Jul 1, 2019
0b4aff6
reformatted MulticlassClassification samples
sierralee51 Jul 1, 2019
f84939f
Update LbfgsMaximumEntropy.cs
sierralee51 Jul 1, 2019
130c6da
Update LbfgsMaximumEntropy.cs
sierralee51 Jul 1, 2019
71e4c19
Update LbfgsMaximumEntropyWithOptions.cs
sierralee51 Jul 1, 2019
8166627
Update LightGbmWithOptions.cs
sierralee51 Jul 1, 2019
5ea92f3
Update LbfgsMaximumEntropy.cs
sierralee51 Jul 1, 2019
b63c891
Update LightGbm.cs
sierralee51 Jul 1, 2019
4d37328
Update LightGbm.cs
sierralee51 Jul 1, 2019
6421a8b
Update LightGbmWithOptions.cs
sierralee51 Jul 1, 2019
79093c8
Update MulticlassClassification.ttinclude
sierralee51 Jul 1, 2019
4c2f723
Update MulticlassClassification.ttinclude
sierralee51 Jul 1, 2019
4a48dc5
Update NaiveBayes.cs
sierralee51 Jul 1, 2019
cc1b3f8
Update NaiveBayes.tt
sierralee51 Jul 1, 2019
c6d4cfd
Update NaiveBayes.tt
sierralee51 Jul 1, 2019
97b3c99
Update OneVersusAll.cs
sierralee51 Jul 1, 2019
6be7d8a
Update PairwiseCoupling.cs
sierralee51 Jul 1, 2019
3f74187
Update SdcaMaximumEntropy.cs
sierralee51 Jul 1, 2019
0d23ad8
Update SdcaMaximumEntropyWithOptions.cs
sierralee51 Jul 1, 2019
c728577
Update SdcaNonCalibrated.cs
sierralee51 Jul 1, 2019
6e82a10
Update SdcaNonCalibratedWithOptions.cs
sierralee51 Jul 1, 2019
1f1ff3b
Update SdcaNonCalibrated.cs
sierralee51 Jul 1, 2019
239e26a
Update SdcaNonCalibrated.cs
sierralee51 Jul 1, 2019
32db971
Update LbfgsMaximumEntropy.cs
sierralee51 Jul 1, 2019
e3e595b
Update LbfgsMaximumEntropy.cs
sierralee51 Jul 1, 2019
969af4d
Update LbfgsMaximumEntropyWithOptions.cs
sierralee51 Jul 1, 2019
b18c508
Update LightGbm.cs
sierralee51 Jul 1, 2019
1af1554
Update LightGbmWithOptions.cs
sierralee51 Jul 1, 2019
d0e1a01
Update MulticlassClassification.ttinclude
sierralee51 Jul 1, 2019
092808d
Update NaiveBayes.cs
sierralee51 Jul 1, 2019
e943230
Update OneVersusAll.cs
sierralee51 Jul 1, 2019
9d014e3
Update PairwiseCoupling.cs
sierralee51 Jul 1, 2019
407c4d8
Update SdcaMaximumEntropy.cs
sierralee51 Jul 1, 2019
b4c9575
Update SdcaMaximumEntropy.cs
sierralee51 Jul 1, 2019
053c85b
Update SdcaMaximumEntropyWithOptions.cs
sierralee51 Jul 1, 2019
0d2baa6
Update SdcaNonCalibrated.cs
sierralee51 Jul 1, 2019
6e410cc
Update SdcaNonCalibratedWithOptions.cs
sierralee51 Jul 1, 2019
278b743
Merge branch 'master' of https://github.com/dotnet/machinelearning in…
sierralee51 Jul 1, 2019
85ed0e6
fixed tabbing issue
sierralee51 Jul 2, 2019
f51c147
fixed indentations
sierralee51 Jul 2, 2019
1e9a3d8
aligned comments
sierralee51 Jul 2, 2019
c3d3499
fixed some indentation and spacing issues
sierralee51 Jul 2, 2019
e497794
fixed extra empty lines
sierralee51 Jul 2, 2019
6224ed5
fixed some more indentation issue
sierralee51 Jul 2, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Update SdcaNonCalibrated.cs
fixing whitespace
  • Loading branch information
sierralee51 authored Jul 1, 2019
commit c728577cd70a6149d0843a0eef802fe30b0601d2
Original file line number Diff line number Diff line change
Expand Up @@ -11,24 +11,24 @@ public static class SdcaNonCalibrated
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);

// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);

// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

// ML.NET doesn't cache data set by default. Therefore, if one reads a
// data set from a file and accesses it many times, it can be slow due
// to expensive featurization and disk operations. When the considered
// data can fit into memory, a solution is to cache the data in memory.
// Caching is especially helpful when working with iterative algorithms
// which needs many data passes.
// data set from a file and accesses it many times, it can be slow due
// to expensive featurization and disk operations. When the considered
// data can fit into memory, a solution is to cache the data in memory.
// Caching is especially helpful when working with iterative algorithms
// which needs many data passes.
trainingData = mlContext.Data.Cache(trainingData);

// Define the trainer.
Expand All @@ -46,7 +46,7 @@ public static void Example()
var model = pipeline.Fit(trainingData);

// Create testing data. Use different random seed to make it different
// from training data.
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

Expand Down Expand Up @@ -110,7 +110,7 @@ private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()

Expand All @@ -119,7 +119,7 @@ private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
}

// Example with label and 20 feature values. A data set is a collection of
// such examples.
// such examples.
private class DataPoint
{
public uint Label { get; set; }
Expand Down