-
Notifications
You must be signed in to change notification settings - Fork 1.9k
[SrCnnEntireAnomalyDetector] Upgrade boundary calculation and expected value calculation #5436
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
2058a36
adjust expected value
cf29408
update boundary calculation
5eaa0a0
fix boundary
55bcfe7
Merge branch 'yuyi/dev/exp_check' into yuyi/dev/new_boundary
a9dfaec
adjust default values
d8a0d9b
fix percent case
411fdea
fix error in anomaly score calculation
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -84,7 +84,7 @@ internal static class Defaults | |
{ | ||
public const double Threshold = 0.3; | ||
public const int BatchSize = 2000; | ||
public const double Sensitivity = 55; | ||
public const double Sensitivity = 70; | ||
public const SrCnnDetectMode DetectMode = SrCnnDetectMode.AnomalyOnly; | ||
public const int Period = 0; | ||
public const SrCnnDeseasonalityMode DeseasonalityMode = SrCnnDeseasonalityMode.Stl; | ||
|
@@ -349,36 +349,55 @@ internal sealed class SrCnnEntireModeler | |
private static readonly int _judgementWindowSize = 40; | ||
private static readonly double _eps = 1e-8; | ||
private static readonly double _deanomalyThreshold = 0.35; | ||
private static readonly double _boundSensitivity = 70.0; | ||
|
||
// A fixed lookup table which returns factor using sensitivity as index. | ||
// Since Margin = BoundaryUnit * factor, this factor is calculated to make sure Margin == Boundary when sensitivity is 50, | ||
// and increases/decreases exponentially as sensitivity increases/decreases. | ||
// The factor array is generated by formula: | ||
// f(x)=1, if x=50; | ||
// f(x)=f(x+1)*(1.25+0.001*x), if 0<=x<50; | ||
// f(x)=f(x+1)/(1.25+0.001*(x-50)), if 50<x<60; | ||
// f(x)=f(x+1)/(1.15+0.001*(x-50)),, if 60<=x<=100. | ||
private static readonly double _boundSensitivity = 93.0; | ||
private static readonly double _unitForZero = 0.3; | ||
|
||
// pseudo-code to generate the factors. | ||
// factors = [] | ||
// for i in range(0, 30): | ||
// sen = 0.8 * (i - 30) ** 2 + 32 | ||
// factors.append(sen) | ||
// for i in range(30, 50): | ||
// sen = -1.25 * i + 67.5 | ||
// factors.append(sen) | ||
// for i in range(50, 60): | ||
// sen = -0.4 * i + 25 | ||
// factors.append(sen) | ||
// for i in range(60, 70): | ||
// sen = -0.04 * i + 3.4 | ||
// factors.append(sen) | ||
// for i in range(70, 80): | ||
// sen = -0.03 * i + 2.7 | ||
// factors.append(sen) | ||
// for i in range(80, 90): | ||
// sen = -0.015 * i + 1.4999999999999998 | ||
// factors.append(sen) | ||
// for i in range(90, 98): | ||
// sen = -0.011818181818181818 * i + 1.2136363636363636 | ||
// factors.append(sen) | ||
// ratio.append(-0.011818181818181818 * 99 + 1.2136363636363636) | ||
// ratio.append(0.01200000000000001) | ||
// for i in range(5): | ||
// sen= -0.001925*i+ 0.008 | ||
// ratio.append(sen) | ||
// ratio.append(0) | ||
// ratio=ratio[5:] | ||
private static readonly double[] _factors = new double[]{ | ||
184331.62871148242, 141902.71648305038, 109324.12672037778, 84289.9974713784, 65038.57829581667, 50222.84038287002, | ||
38812.08684920403, 30017.081863266845, 23233.035497884553, 17996.15452973242, 13950.50738738947, 10822.736530170265, | ||
8402.745753237783, 6528.939979205737, 5076.93622022219, 3950.92312857758, 3077.042935029268, 2398.318733460069, | ||
1870.7634426365591, 1460.393007522685, 1140.9320371270976, 892.0500681212648, 698.0047481387048, 546.5972968979678, | ||
428.36778753759233, 335.97473532360186, 263.71643275007995, 207.16137686573444, 162.8627176617409, 128.13746472206208, | ||
100.8956415134347, 79.50799173635517, 62.70346351447568, 49.48971074544253, 39.09139869308257, 30.90229145698227, | ||
24.448015393182175, 19.35709849024717, 15.338429865489042, 12.163703303322, 9.653732780414286, 7.667778221139226, | ||
6.095213212352326, 4.8490160798347866, 3.8606815922251485, 3.076240312529999, 2.4531421949999994, 1.9578149999999996, | ||
1.5637499999999998, 1.25, 1.0, 0.8695652173913044, 0.7554867223208555, 0.655804446459076, 0.5687809596349316, | ||
0.4928777813127657, 0.4267340097946024, 0.36914706729636887, 0.3190553736355825, 0.27552277516026125, 0.23772456873189068, | ||
0.20493497304473338, 0.17651591132190647, 0.1519069804835684, 0.13061649224726435, 0.11221348131208278, 0.09632058481723846, | ||
0.08260770567516164, 0.0707863801843716, 0.06060477755511267, 0.051843265658779024, 0.0443104834690419, 0.03783986632710667, | ||
0.03228657536442549, 0.027524787181948417, 0.02344530424356765, 0.019953450420057577, 0.01696721974494692, 0.014415649740821513, | ||
0.012237393667929978, 0.010379468759906684, 0.008796159966022614, 0.0074480609365136455, 0.006301235986898177, | ||
0.00532648857725966, 0.004498723460523362, 0.0037963911059268884, 0.0032010043051660104, 0.002696718032995797, | ||
0.0022699646742388863, 0.0019091376570554135, 0.0011570531254881296, 0.000697019955113331, 0.00041737721863073713, | ||
0.000248438820613534, 0.00014700521929794912, 8.647365841055832e-05, 5.056939088336744e-05, 2.9400808653120604e-05, | ||
1.6994687082728674e-05, 9.767061541798089e-06 | ||
}; | ||
532.0, 492.8, 455.20000000000005, 419.20000000000005, 384.8, 352.0, 320.8, 291.2, 263.20000000000005, | ||
236.8, 212.0, 188.8, 167.20000000000002, 147.2, 128.8, 112.0, 96.8, 83.2, 71.2, 60.8, 52.0, 44.8, 39.2, | ||
35.2, 32.8, 30.0, 28.75, 27.5, 26.25, 25.0, 23.75, 22.5, 21.25, 20.0, 18.75, 17.5, 16.25, 15.0, 13.75, | ||
12.5, 11.25, 10.0, 8.75, 7.5, 6.25, 5.0, 4.599999999999998, 4.199999999999999, 3.799999999999997, | ||
3.3999999999999986, 3.0, 2.599999999999998, 2.1999999999999993, 1.7999999999999972, 1.3999999999999986, | ||
1.0, 0.96, 0.9199999999999999, 0.8799999999999999, 0.8399999999999999, 0.7999999999999998, | ||
0.7599999999999998, 0.7199999999999998, 0.6799999999999997, 0.6399999999999997, 0.6000000000000001, | ||
0.5700000000000003, 0.54, 0.5100000000000002, 0.4800000000000004, 0.4500000000000002, 0.4200000000000004, | ||
0.3900000000000001, 0.3600000000000003, 0.33000000000000007, 0.2999999999999998, 0.2849999999999999, | ||
0.2699999999999998, 0.2549999999999999, 0.23999999999999977, 0.22499999999999987, 0.20999999999999974, | ||
0.19499999999999984, 0.17999999999999994, 0.1649999999999998, 0.1499999999999999, 0.13818181818181818, | ||
0.12636363636363646, 0.1145454545454545, 0.10272727272727278, 0.09090909090909083, 0.0790909090909091, | ||
0.06727272727272737, 0.043636363636363695, 0.01200000000000001, 0.008, 0.0060750000000000005, 0.00415, | ||
0.0022249999999999995, 0.0002999999999999999, 0.0 | ||
}; | ||
|
||
private readonly double _threshold; | ||
private readonly double _sensitivity; | ||
|
@@ -387,6 +406,8 @@ internal sealed class SrCnnEntireModeler | |
private readonly IDeseasonality _deseasonalityFunction; | ||
|
||
//used in all modes | ||
private double _minimumOriginValue; | ||
private double _maximumOriginValue; | ||
private readonly double[] _predictArray; | ||
private double[] _backAddArray; | ||
private double[] _fftRe; | ||
|
@@ -449,10 +470,15 @@ public void Train(double[] values, ref double[][] results) | |
Array.Resize<double[]>(ref results, values.Length); | ||
} | ||
|
||
_minimumOriginValue = Double.MaxValue; | ||
_maximumOriginValue = Double.MinValue; | ||
|
||
Array.Resize(ref _seriesToDetect, values.Length); | ||
for (int i = 0; i < values.Length; ++i) | ||
{ | ||
_seriesToDetect[i] = values[i]; | ||
_minimumOriginValue = Math.Min(_minimumOriginValue, values[i]); | ||
_maximumOriginValue = Math.Max(_maximumOriginValue, values[i]); | ||
} | ||
|
||
if (_period > 0) | ||
|
@@ -641,7 +667,7 @@ private void GetExpectedValue(double[] values, double[][] results) | |
|
||
for (int i = 0; i < results.Length; ++i) | ||
{ | ||
results[i][3] = _ifftRe[i]; | ||
results[i][3] = AdjustExpectedValueBasedOnOriginalDataRange(_ifftRe[i]); | ||
} | ||
} | ||
|
||
|
@@ -650,7 +676,7 @@ private void GetExpectedValuePeriod(double[] values, double[][] results, IReadOn | |
//Step 8: Calculate Expected Value | ||
for (int i = 0; i < values.Length; ++i) | ||
{ | ||
results[i][3] = values[i] - residual[i]; | ||
results[i][3] = AdjustExpectedValueBasedOnOriginalDataRange(values[i] - residual[i]); | ||
} | ||
} | ||
|
||
|
@@ -762,7 +788,8 @@ private void GetMargin(double[] values, double[][] results, double sensitivity) | |
{ | ||
//Step 10: Calculate UpperBound and LowerBound | ||
var margin = CalculateMargin(_units[i], sensitivity); | ||
results[i][3] = _ifftRe[i]; | ||
results[i][3] = AdjustExpectedValueBasedOnOriginalDataRange(_ifftRe[i]); | ||
|
||
results[i][4] = _units[i]; | ||
results[i][5] = _ifftRe[i] + margin; | ||
results[i][6] = _ifftRe[i] - margin; | ||
|
@@ -783,6 +810,21 @@ private void GetMargin(double[] values, double[][] results, double sensitivity) | |
} | ||
} | ||
|
||
// Adjust the expected value if original data range is non-negative or non-positive | ||
private double AdjustExpectedValueBasedOnOriginalDataRange(double expectedValue) | ||
{ | ||
if (_minimumOriginValue >= 0 && expectedValue < 0) | ||
{ | ||
expectedValue = 0; | ||
} | ||
else if (_maximumOriginValue <= 0 && expectedValue > 0) | ||
{ | ||
expectedValue = 0; | ||
} | ||
|
||
return expectedValue; | ||
} | ||
|
||
// Adjust the expected value so that it is within the bound margin of value | ||
private double AdjustExpectedValueBasedOnBound(double value, double expectedValue, double unit) | ||
{ | ||
|
@@ -880,18 +922,20 @@ private void CalculateExpectedValueByFft(double[] data) | |
FftUtils.ComputeBackwardFft(_fftRe, _fftIm, _ifftRe, _ifftIm, length); | ||
} | ||
|
||
private void CalculateBoundaryUnit(double[] data, bool[] isAnomalys) | ||
private void CalculateBoundaryUnit(double[] data, bool[] isAnomalies) | ||
{ | ||
int window = Math.Min(data.Length / 3, 512); | ||
double trendFraction = 0.5; // mix trend and average of trend | ||
double trendSum = 0; | ||
int calculationSize = 0; | ||
bool closeToZero = true; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit, so by default |
||
|
||
MedianFilter(data, window, true); | ||
for (int i = 0; i < _trends.Length; ++i) | ||
{ | ||
if (!isAnomalys[i]) | ||
if (!isAnomalies[i]) | ||
{ | ||
closeToZero = closeToZero && _trends[i] < _eps; | ||
trendSum += Math.Abs(_trends[i]); | ||
++calculationSize; | ||
} | ||
|
@@ -910,10 +954,17 @@ private void CalculateBoundaryUnit(double[] data, bool[] isAnomalys) | |
Array.Resize(ref _units, _trends.Length); | ||
for (int i = 0; i < _units.Length; ++i) | ||
{ | ||
_units[i] = Math.Max(1, averageTrendPart + Math.Abs(_trends[i]) * trendFraction); | ||
if (double.IsInfinity(_units[i])) | ||
if (closeToZero) | ||
{ | ||
_units[i] = _unitForZero; | ||
} | ||
else | ||
{ | ||
throw new ArithmeticException("Not finite unit value"); | ||
_units[i] = averageTrendPart + Math.Abs(_trends[i]) * trendFraction; | ||
if (double.IsInfinity(_units[i])) | ||
{ | ||
throw new ArithmeticException("Not finite unit value"); | ||
} | ||
} | ||
} | ||
} | ||
|
@@ -1031,19 +1082,14 @@ private double CalculateAnomalyScore(double value, double exp, double unit, bool | |
return anomalyScore; | ||
} | ||
|
||
double distance = Math.Abs(exp - value); | ||
List<double> margins = new List<double>(); | ||
for (int i = 100; i >= 0; --i) | ||
{ | ||
margins.Add(CalculateMargin(unit, i)); | ||
} | ||
double distanceFactor = Math.Abs(exp - value) / unit; | ||
|
||
int lb = 0; | ||
int ub = 100; | ||
while (lb < ub) | ||
{ | ||
int mid = (lb + ub) / 2; | ||
if (margins[mid] < distance) | ||
if (_factors[100 - mid] < distanceFactor) | ||
{ | ||
lb = mid + 1; | ||
} | ||
|
@@ -1053,15 +1099,15 @@ private double CalculateAnomalyScore(double value, double exp, double unit, bool | |
} | ||
} | ||
|
||
if (Math.Abs(margins[lb] - distance) < _eps || lb == 0) | ||
if (_factors[100 - lb] == distanceFactor || lb == 0) | ||
{ | ||
anomalyScore = lb; | ||
} | ||
else | ||
{ | ||
double lowerMargin = margins[lb - 1]; | ||
double upperMargin = margins[lb]; | ||
anomalyScore = lb - 1 + (distance - lowerMargin) / (upperMargin - lowerMargin); | ||
double lowerMargin = _factors[101 - lb]; | ||
double upperMargin = _factors[100 - lb]; | ||
anomalyScore = lb - 1 + (distanceFactor - lowerMargin) / (upperMargin - lowerMargin); | ||
} | ||
|
||
return anomalyScore / 100.0f; | ||
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If the minimum original value > 0 and you set the expected value = 0, couldn't this leave the expected value out of range? Is this adjusted elsewhere?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I does't adjust the expected value that much, there are cases that the expected value curve is not smooth and looks odd. Currently for not anomaly points, we have logic that ensure it is close to the original value which can guarantee the expected value is not far away from the original data range.
In reply to: 505667560 [](ancestors = 505667560)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just curious does kensho have similar check in your service?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
kensho has similar logic to adjust the expected value of anomaly / non-anomaly points and don't implement the data range check as there is no dsat report on this so far.
In reply to: 506583086 [](ancestors = 506583086)