This project analyzes user reviews of banking applications to extract insights and trends.
banking-reviews/
├── data/ # Raw and processed data
│ ├── raw/ # Original, immutable data
│ └── processed/ # Cleaned and transformed data
├── notebooks/ # Jupyter notebooks for analysis
├── src/ # Source code
│ ├── data/ # Data processing scripts
│ ├── features/ # Feature engineering scripts
│ ├── models/ # Model training scripts
│ └── visualization/# Visualization scripts
├── tests/ # Unit tests
├── docs/ # Documentation
├── requirements.txt # Project dependencies
└── .gitignore # Git ignore file
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install dependencies:
pip install -r requirements.txtScrape 400+ reviews for each Ethiopian bank app from Google Play Store:
python src/data/scrape_reviews.py- Output:
data/raw/raw_reviews.csv
Clean the scraped reviews, remove duplicates, handle missing data, and normalize dates:
python src/data/clean_reviews.py- Output:
data/processed/cleaned_reviews.csv
Extract common themes and generate word clouds for each bank:
python src/features/theme_analysis.py- Output:
data/analysis/themes_by_bank.csvand word cloud images indata/analysis/
Explore and visualize the data:
cd notebooks
jupyter notebookOpen bank_reviews_analysis.ipynb for interactive analysis.
Run all tests to verify functionality:
pytest tests/- Follow PEP 8 style guide
- Write tests for new features
- Update documentation as needed # Customer-Experience-Analytics-for-Fintech