Skip to content

goShell3/solar-challenge-week1

Repository files navigation

Solar Potential Analysis Project

🌍 Cross-Country Solar Potential Comparison

This project analyzes and compares solar irradiation data across Benin, Sierra Leone, and Togo to identify relative solar potential and key differences between these West African nations.

📂 Project Structure

solar-analysis/
├── data/
│   ├── raw/                  # Original data files
│   ├── processed/            # Cleaned country datasets
│   └── outputs/              # Analysis results
├── notebooks/
│   ├── 1_data_cleaning.ipynb
│   ├── 2_country_analysis.ipynb
│   └── 3_comparison.ipynb    # Main comparison notebook
├── src/
│   ├── data_cleaner.py       # Data preprocessing
│   ├── feature_engineer.py   # Feature generation
│   └── visualization.py      # Plotting functions
└── README.md

🔄 Workflow Pipeline

  1. Data Preparation

    • Load raw CSV files for each country
    • Standardize timestamps and column names
    • Handle missing values and outliers
  2. Country-Specific Cleaning

    # Sample cleaning pipeline per country
    cleaner = (
        SolarDataCleaner(df)
        .add_time_features()
        .handle_missing_values()
        .remove_outliers()
        .validate_ranges()
    )
    cleaned_df = cleaner.get_clean_data()
  3. Comparative Analysis

    • Generate side-by-side visualizations
    • Calculate summary statistics
    • Perform statistical significance testing
  4. Key Metric Comparison

    • Global Horizontal Irradiance (GHI)
    • Direct Normal Irradiance (DNI)
    • Diffuse Horizontal Irradiance (DHI)

📊 Analysis Steps

1. Data Loading & Preparation

  • Load each country's cleaned dataset
  • Ensure consistent datetime indexing
  • Verify all metrics exist in each dataset

2. Visual Comparison

# Generate comparison boxplots
plot_comparison_boxplots(
    metrics=['GHI', 'DNI', 'DHI'],
    countries=['benin', 'sierra_leone', 'togo'],
    data=cleaned_data
)

3. Statistical Analysis

  • ANOVA Testing:
    stats.f_oneway(benin_ghi, sierraleone_ghi, togo_ghi)
  • Post-hoc Tests (if ANOVA significant):
    stats.tukey_hsd(benin_ghi, sierraleone_ghi, togo_ghi)

4. Key Findings Documentation

  • Create markdown summary of:
    • Highest potential countries
    • Variability observations
    • Atmospheric condition inferences

💡 Interpretation Guide

Metric Ideal Characteristics Significance
GHI Higher values Overall solar potential
DNI High + Stable Good for concentrated solar
DHI Low relative to GHI Clear atmosphere

🚀 Running the Analysis

  1. Install requirements:

    pip install -r requirements.txt
  2. Execute notebooks in order:

    1_data_cleaning.ipynb → 2_country_analysis.ipynb → 3_comparison.ipynb
    
  3. View outputs in:

    • data/outputs/ for numerical results
    • notebooks/figures/ for visualizations

📝 Key Observations Template

### Comparative Insights
1. Highest Potential: Sierra Leone shows the highest median GHI at approximately 490 W/m², closely followed by Benin.

2. Consistency: Togo demonstrates the most stable radiation (IQR ≈ 400 W/m²), indicating less variability in total irradiance.

3. Atmospheric: Togo's low DNI compared to GHI (high DHI/DNI ratio) suggests more diffuse sunlight, likely due to frequent cloud cover or atmospheric scattering.

🔍 Further Analysis Suggestions

  • Seasonal variation decomposition
  • Cloud cover impact analysis
  • Solar farm yield simulations
  • Economic feasibility projections

This systematic approach enables scientifically rigorous comparison of solar potential across West African nations, supporting data-driven energy policy decisions.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published