This project analyzes and compares solar irradiation data across Benin, Sierra Leone, and Togo to identify relative solar potential and key differences between these West African nations.
solar-analysis/
├── data/
│ ├── raw/ # Original data files
│ ├── processed/ # Cleaned country datasets
│ └── outputs/ # Analysis results
├── notebooks/
│ ├── 1_data_cleaning.ipynb
│ ├── 2_country_analysis.ipynb
│ └── 3_comparison.ipynb # Main comparison notebook
├── src/
│ ├── data_cleaner.py # Data preprocessing
│ ├── feature_engineer.py # Feature generation
│ └── visualization.py # Plotting functions
└── README.md
-
Data Preparation
- Load raw CSV files for each country
- Standardize timestamps and column names
- Handle missing values and outliers
-
Country-Specific Cleaning
# Sample cleaning pipeline per country cleaner = ( SolarDataCleaner(df) .add_time_features() .handle_missing_values() .remove_outliers() .validate_ranges() ) cleaned_df = cleaner.get_clean_data()
-
Comparative Analysis
- Generate side-by-side visualizations
- Calculate summary statistics
- Perform statistical significance testing
-
Key Metric Comparison
- Global Horizontal Irradiance (GHI)
- Direct Normal Irradiance (DNI)
- Diffuse Horizontal Irradiance (DHI)
- Load each country's cleaned dataset
- Ensure consistent datetime indexing
- Verify all metrics exist in each dataset
# Generate comparison boxplots
plot_comparison_boxplots(
metrics=['GHI', 'DNI', 'DHI'],
countries=['benin', 'sierra_leone', 'togo'],
data=cleaned_data
)- ANOVA Testing:
stats.f_oneway(benin_ghi, sierraleone_ghi, togo_ghi)
- Post-hoc Tests (if ANOVA significant):
stats.tukey_hsd(benin_ghi, sierraleone_ghi, togo_ghi)
- Create markdown summary of:
- Highest potential countries
- Variability observations
- Atmospheric condition inferences
| Metric | Ideal Characteristics | Significance |
|---|---|---|
| GHI | Higher values | Overall solar potential |
| DNI | High + Stable | Good for concentrated solar |
| DHI | Low relative to GHI | Clear atmosphere |
-
Install requirements:
pip install -r requirements.txt
-
Execute notebooks in order:
1_data_cleaning.ipynb → 2_country_analysis.ipynb → 3_comparison.ipynb -
View outputs in:
data/outputs/for numerical resultsnotebooks/figures/for visualizations
### Comparative Insights
1. Highest Potential: Sierra Leone shows the highest median GHI at approximately 490 W/m², closely followed by Benin.
2. Consistency: Togo demonstrates the most stable radiation (IQR ≈ 400 W/m²), indicating less variability in total irradiance.
3. Atmospheric: Togo's low DNI compared to GHI (high DHI/DNI ratio) suggests more diffuse sunlight, likely due to frequent cloud cover or atmospheric scattering.- Seasonal variation decomposition
- Cloud cover impact analysis
- Solar farm yield simulations
- Economic feasibility projections
This systematic approach enables scientifically rigorous comparison of solar potential across West African nations, supporting data-driven energy policy decisions.