Skip to content

feat: add level param to DataFrame.stack #88

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion bigframes/core/block_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def equals(block1: blocks.Block, block2: blocks.Block) -> bool:
joined_block = joined_block.select_columns(equality_ids).with_column_labels(
list(range(len(equality_ids)))
)
stacked_block = joined_block.stack(dropna=False, sort=False)
stacked_block = joined_block.stack()
result = stacked_block.get_stat(stacked_block.value_columns[0], agg_ops.all_op)
return typing.cast(bool, result)

Expand Down
12 changes: 6 additions & 6 deletions bigframes/core/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -1284,20 +1284,20 @@ def pivot(

return result_block.with_column_labels(column_index)

def stack(self, how="left", dropna=True, sort=True, levels: int = 1):
def stack(self, how="left", levels: int = 1):
"""Unpivot last column axis level into row axis"""
if levels == 0:
return self

# These are the values that will be turned into rows

col_labels, row_labels = utils.split_index(self.column_labels, levels=levels)
if dropna:
row_labels = row_labels.drop_duplicates()
if sort:
row_labels = row_labels.sort_values()
row_labels = row_labels.drop_duplicates()

row_label_tuples = utils.index_as_tuples(row_labels)

if col_labels is not None:
result_index = col_labels.drop_duplicates().sort_values().dropna(how="all")
result_index = col_labels.drop_duplicates().dropna(how="all")
result_col_labels = utils.index_as_tuples(result_index)
else:
result_index = pd.Index([None])
Expand Down
49 changes: 37 additions & 12 deletions bigframes/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -1741,24 +1741,49 @@ def pivot(
)
return DataFrame(pivot_block)

def stack(self):
# TODO: support 'level' param by simply reordering levels such that selected level is last before passing to Block.stack.
# TODO: match impl to pandas future_stack as described in pandas 2.1 release notes
stack_block = self._block.stack()
result_block = block_ops.dropna(
stack_block, stack_block.value_columns, how="all"
)
def stack(self, level: LevelsType = -1):
if not isinstance(self.columns, pandas.MultiIndex):
return bigframes.series.Series(result_block)
return DataFrame(result_block)
if level not in [0, -1, self.columns.name]:
raise IndexError(f"Invalid level {level} for single-level index")
return self._stack_mono()
return self._stack_multi(level)

def _stack_mono(self):
result_block = self._block.stack()
return bigframes.series.Series(result_block)

def _stack_multi(self, level: LevelsType = -1):
n_levels = self.columns.nlevels
if isinstance(level, int) or isinstance(level, str):
level = [level]
level_indices = []
for level_ref in level:
if isinstance(level_ref, int):
if level_ref < 0:
level_indices.append(n_levels + level_ref)
else:
level_indices.append(level_ref)
else: # str
level_indices.append(self.columns.names.index(level_ref))

new_order = [
*[i for i in range(n_levels) if i not in level_indices],
*level_indices,
]

original_columns = typing.cast(pandas.MultiIndex, self.columns)
new_columns = original_columns.reorder_levels(new_order)

block = self._block.with_column_labels(new_columns)

block = block.stack(levels=len(level))
return DataFrame(block)

def unstack(self):
block = self._block
# Special case, unstack with mono-index transpose into a series
if self.index.nlevels == 1:
block = block.stack(
how="right", dropna=False, sort=False, levels=self.columns.nlevels
)
block = block.stack(how="right", levels=self.columns.nlevels)
return bigframes.series.Series(block)

# Pivot by last level of index
Expand Down
4 changes: 3 additions & 1 deletion tests/system/small/test_dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -1885,6 +1885,8 @@ def test_df_describe(scalars_dfs):


def test_df_stack(scalars_dfs):
if pandas.__version__.startswith("1.") or pandas.__version__.startswith("2.0"):
pytest.skip("pandas <2.1 uses different stack implementation")
scalars_df, scalars_pandas_df = scalars_dfs
# To match bigquery dataframes
scalars_pandas_df = scalars_pandas_df.copy()
Expand All @@ -1893,7 +1895,7 @@ def test_df_stack(scalars_dfs):
columns = ["int64_col", "int64_too", "rowindex_2"]

bf_result = scalars_df[columns].stack().to_pandas()
pd_result = scalars_pandas_df[columns].stack()
pd_result = scalars_pandas_df[columns].stack(future_stack=True)

# Pandas produces NaN, where bq dataframes produces pd.NA
pd.testing.assert_series_equal(bf_result, pd_result, check_dtype=False)
Expand Down
38 changes: 25 additions & 13 deletions tests/system/small/test_multiindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -718,25 +718,37 @@ def test_column_multi_index_cumsum(scalars_df_index, scalars_pandas_df_index):
pandas.testing.assert_frame_equal(bf_result, pd_result, check_dtype=False)


def test_column_multi_index_stack(scalars_df_index, scalars_pandas_df_index):
columns = ["int64_too", "int64_col", "rowindex_2"]
@pytest.mark.parametrize(
("level",),
[(["l3", "l1"],), ([-2, -1],), (["l3"],), ("l2",), (-3,)],
)
def test_column_multi_index_stack(level):
if pandas.__version__.startswith("1.") or pandas.__version__.startswith("2.0"):
pytest.skip("pandas <2.1 uses different stack implementation")

level1 = pandas.Index(["b", "a", "b"])
# Need resulting column to be pyarrow string rather than object dtype
level2 = pandas.Index(["a", "b", "b"], dtype="string[pyarrow]")
multi_columns = pandas.MultiIndex.from_arrays([level1, level2])
bf_df = scalars_df_index[columns].copy()
bf_df.columns = multi_columns
pd_df = scalars_pandas_df_index[columns].copy()
pd_df.columns = multi_columns
level2 = pandas.Index(["a", "b", "b"])
level3 = pandas.Index(["b", "b", "a"])

bf_result = bf_df.stack().to_pandas()
# Shifting sort behavior in stack
pd_result = pd_df.stack()
multi_columns = pandas.MultiIndex.from_arrays(
[level1, level2, level3], names=["l1", "l2", "l3"]
)
pd_df = pandas.DataFrame(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=[5, 2, None],
columns=multi_columns,
dtype="Int64",
)
bf_df = bpd.DataFrame(pd_df)

bf_result = bf_df.stack(level=level).to_pandas()
# BigFrames emulates future_stack impl
pd_result = pd_df.stack(level=level, future_stack=True)

# Pandas produces NaN, where bq dataframes produces pd.NA
# Column ordering seems to depend on pandas version
pandas.testing.assert_frame_equal(
bf_result.sort_index(axis=1), pd_result.sort_index(axis=1), check_dtype=False
bf_result, pd_result, check_dtype=False, check_index_type=False
)


Expand Down