-
Generate Prediction Scores for Base Models
Please follow https://github.com/Juanhui28/HeaRT/tree/master to get the prediction scores for 10 seeds in existing setting. For example, for the gcn prediction scores of ogbl-collab dataset:
cd benchmarking/exist_setting_ogb python main_gnn_ogb.py --use_valedges_as_input --data_name ogbl-collab --gnn_model GCN --hidden_channels 256 --lr 0.001 --dropout 0. --num_layers 3 --num_layers_predictor 3 --epochs 9999 --kill_cnt 100 --batch_size 65536 --save --outupt_dir ~/prediction_socres/collab/gcnThe prediction score of gcn will be saved in the following format:
{ 'pos_valid_score': pos_valid_pred, 'neg_valid_score': neg_valid_pred, 'pos_test_score': pos_test_pred, 'neg_test_score': neg_test_pred, 'node_emb': x1, 'node_emb_with_valid_edges': x2 } -
Generate Heuristic Features
Please follow https://github.com/Juanhui28/HeaRT/tree/master to get CN, AA, RA, Katz, PPR, Shorteset Path Length for each dataset. For example, for AA feature of ogbl-collab dataset:
cd benchmarking/exist_setting_ogb python main_heuristic_ogb.py --data_name ogbl-collab --use_heuristic AA --use_valedges_as_input --output_dir ~/heuristics/Please modify the save_path in Line 252 as follows,
save_path = args.output_dir + args.data_name.split('-')[1] + '/' + args.use_heuristicThe AA feature will be saved in the following format:
{'pos_test_score': [], 'neg_test_score': [], 'pos_valid_score': [], 'neg_valid_score': []} -
Run the Codes
ogbl-collab
python main.py --device 2 --use_valedges_as_input --data_name ogbl-collab --name collab --l2 0 --lr 0.001 --dropout 0 --num_layers 2 --hidden_channels 64 --score_number 0 --num_layers_predictor 1 --ncnc --neognn --buddy --mlp --n2v --seal --gcn --ncn --use_feature --use_degree --use_cn --use_sp --use_aa --use_ra --use_katz --use_ppr --end_epochs 800 --ratio 0.8 --train_batch_size 60048 --test_batch_size 100000 --kill_cnt 2000oglb-ppa
python main.py --device 2 --ratio 0.8 --data_name ogbl-ppa --name ppa --l2 0--lr 0.0001 --dropout 0 --num_layers 3 --hidden_channels 64 --score_number 0 --num_layers_predictor 1 --ncnc --neognn --buddy --mlp --n2v --seal --gcn --ncn --use_feature --use_degree --use_cn --use_sp --use_aa --use_ra --use_katz --use_ppr --end_epochs 500 --train_batch_size 50 --test_batch_size 60048ogbl-citation2
python main.py --device 2 --ratio 0.8 --data_name ogbl-citation2 --name citation2 --l2 0 --lr 0.001 --dropout 0 --num_layers 2 --hidden_channels 64 --score_number 0 --num_layers_predictor 1 --ncnc --neognn --buddy --mlp --n2v --seal --gcn --ncn --use_feature --use_degree --use_cn --use_aa --use_ra --use_katz --train_batch_size 300 --test_batch_size 60048 --end_epochs 30 --kill_cnt 2000When running the codes in Step 1 and Step 2, please follow the provided parameters in 'https://github.com/Juanhui28/HeaRT/tree/master/scripts/hyperparameters/existing_setting_ogb'.
The score_number in Step 3 means the prediction results of base models in different seeds.
-
Notifications
You must be signed in to change notification settings - Fork 1
ml-ml/Link-MoE
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published